3.11.93 \(\int \frac {e^{2 \tanh ^{-1}(a x)} (c-a^2 c x^2)^{3/2}}{x^4} \, dx\) [1093]

Optimal. Leaf size=115 \[ -\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-a^3 c^{3/2} \text {ArcTan}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+a^3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

[Out]

-1/3*(-a^2*c*x^2+c)^(3/2)/x^3-a^3*c^(3/2)*arctan(a*x*c^(1/2)/(-a^2*c*x^2+c)^(1/2))+a^3*c^(3/2)*arctanh((-a^2*c
*x^2+c)^(1/2)/c^(1/2))-a*c*(a*x+1)*(-a^2*c*x^2+c)^(1/2)/x^2

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6286, 1821, 825, 858, 223, 209, 272, 65, 214} \begin {gather*} -\frac {a c (a x+1) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+a^3 \left (-c^{3/2}\right ) \text {ArcTan}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+a^3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^4,x]

[Out]

-((a*c*(1 + a*x)*Sqrt[c - a^2*c*x^2])/x^2) - (c - a^2*c*x^2)^(3/2)/(3*x^3) - a^3*c^(3/2)*ArcTan[(a*Sqrt[c]*x)/
Sqrt[c - a^2*c*x^2]] + a^3*c^(3/2)*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 825

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^
(m + 1))*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)))*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*
p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e^2) + 2*c*d*p*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^
2 + a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p +
 1) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e
^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 6286

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[c^(n/2), Int[x^m*(c
 + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p] ||
 GtQ[c, 0]) && IGtQ[n/2, 0]

Rubi steps

\begin {align*} \int \frac {e^{2 \tanh ^{-1}(a x)} \left (c-a^2 c x^2\right )^{3/2}}{x^4} \, dx &=c \int \frac {(1+a x)^2 \sqrt {c-a^2 c x^2}}{x^4} \, dx\\ &=-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\frac {1}{3} \int \frac {\left (-6 a c-3 a^2 c x\right ) \sqrt {c-a^2 c x^2}}{x^3} \, dx\\ &=-\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}+\frac {\int \frac {-12 a^3 c^3-12 a^4 c^3 x}{x \sqrt {c-a^2 c x^2}} \, dx}{12 c}\\ &=-\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\left (a^3 c^2\right ) \int \frac {1}{x \sqrt {c-a^2 c x^2}} \, dx-\left (a^4 c^2\right ) \int \frac {1}{\sqrt {c-a^2 c x^2}} \, dx\\ &=-\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-\frac {1}{2} \left (a^3 c^2\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c-a^2 c x}} \, dx,x,x^2\right )-\left (a^4 c^2\right ) \text {Subst}\left (\int \frac {1}{1+a^2 c x^2} \, dx,x,\frac {x}{\sqrt {c-a^2 c x^2}}\right )\\ &=-\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-a^3 c^{3/2} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+(a c) \text {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c-a^2 c x^2}\right )\\ &=-\frac {a c (1+a x) \sqrt {c-a^2 c x^2}}{x^2}-\frac {\left (c-a^2 c x^2\right )^{3/2}}{3 x^3}-a^3 c^{3/2} \tan ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+a^3 c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 127, normalized size = 1.10 \begin {gather*} -\frac {c \left (1+3 a x+2 a^2 x^2\right ) \sqrt {c-a^2 c x^2}}{3 x^3}+a^3 c^{3/2} \text {ArcTan}\left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (-1+a^2 x^2\right )}\right )-a^3 c^{3/2} \log (x)+a^3 c^{3/2} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcTanh[a*x])*(c - a^2*c*x^2)^(3/2))/x^4,x]

[Out]

-1/3*(c*(1 + 3*a*x + 2*a^2*x^2)*Sqrt[c - a^2*c*x^2])/x^3 + a^3*c^(3/2)*ArcTan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[
c]*(-1 + a^2*x^2))] - a^3*c^(3/2)*Log[x] + a^3*c^(3/2)*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(433\) vs. \(2(97)=194\).
time = 0.07, size = 434, normalized size = 3.77

method result size
risch \(\frac {\left (2 a^{4} x^{4}+3 a^{3} x^{3}-a^{2} x^{2}-3 a x -1\right ) c^{2}}{3 x^{3} \sqrt {-c \left (a^{2} x^{2}-1\right )}}-\left (\frac {a^{4} \arctan \left (\frac {\sqrt {c \,a^{2}}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{\sqrt {c \,a^{2}}}-\frac {a^{3} \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )}{\sqrt {c}}\right ) c^{2}\) \(129\)
default \(\frac {4 a^{2} \left (-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{c x}-4 a^{2} \left (\frac {x \left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{4}+\frac {3 c \left (\frac {x \sqrt {-a^{2} c \,x^{2}+c}}{2}+\frac {c \arctan \left (\frac {\sqrt {c \,a^{2}}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{2 \sqrt {c \,a^{2}}}\right )}{4}\right )\right )}{3}-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{3 c \,x^{3}}+2 a^{3} \left (\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{3}+c \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )\right )-2 a^{3} \left (\frac {\left (-c \,a^{2} \left (x -\frac {1}{a}\right )^{2}-2 c a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}-a c \left (-\frac {\left (-2 a^{2} c \left (x -\frac {1}{a}\right )-2 a c \right ) \sqrt {-c \,a^{2} \left (x -\frac {1}{a}\right )^{2}-2 c a \left (x -\frac {1}{a}\right )}}{4 a^{2} c}+\frac {c \arctan \left (\frac {\sqrt {c \,a^{2}}\, x}{\sqrt {-c \,a^{2} \left (x -\frac {1}{a}\right )^{2}-2 c a \left (x -\frac {1}{a}\right )}}\right )}{2 \sqrt {c \,a^{2}}}\right )\right )+2 a \left (-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {5}{2}}}{2 c \,x^{2}}-\frac {3 a^{2} \left (\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{3}+c \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )\right )}{2}\right )\) \(434\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^4,x,method=_RETURNVERBOSE)

[Out]

4/3*a^2*(-1/c/x*(-a^2*c*x^2+c)^(5/2)-4*a^2*(1/4*x*(-a^2*c*x^2+c)^(3/2)+3/4*c*(1/2*x*(-a^2*c*x^2+c)^(1/2)+1/2*c
/(c*a^2)^(1/2)*arctan((c*a^2)^(1/2)*x/(-a^2*c*x^2+c)^(1/2)))))-1/3/c/x^3*(-a^2*c*x^2+c)^(5/2)+2*a^3*(1/3*(-a^2
*c*x^2+c)^(3/2)+c*((-a^2*c*x^2+c)^(1/2)-c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)))-2*a^3*(1/3*(-c*a^
2*(x-1/a)^2-2*c*a*(x-1/a))^(3/2)-a*c*(-1/4*(-2*a^2*c*(x-1/a)-2*a*c)/a^2/c*(-c*a^2*(x-1/a)^2-2*c*a*(x-1/a))^(1/
2)+1/2*c/(c*a^2)^(1/2)*arctan((c*a^2)^(1/2)*x/(-c*a^2*(x-1/a)^2-2*c*a*(x-1/a))^(1/2))))+2*a*(-1/2/c/x^2*(-a^2*
c*x^2+c)^(5/2)-3/2*a^2*(1/3*(-a^2*c*x^2+c)^(3/2)+c*((-a^2*c*x^2+c)^(1/2)-c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2
+c)^(1/2))/x))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^4,x, algorithm="maxima")

[Out]

a^2*c^(3/2)*integrate(sqrt(a*x + 1)*sqrt(-a*x + 1)/x^2, x) - 1/2*(a^4*c^(5/2)*log((sqrt(-a^2*c*x^2 + c) - sqrt
(c))/(sqrt(-a^2*c*x^2 + c) + sqrt(c))) + 2*sqrt(-a^2*c*x^2 + c)*a^2*c^2/x^2)/(a*c) + 1/3*(a^2*c^(3/2)*x^2 - c^
(3/2))*sqrt(a*x + 1)*sqrt(-a*x + 1)/x^3

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 265, normalized size = 2.30 \begin {gather*} \left [\frac {6 \, a^{3} c^{\frac {3}{2}} x^{3} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) + 3 \, a^{3} c^{\frac {3}{2}} x^{3} \log \left (-\frac {a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) - 2 \, {\left (2 \, a^{2} c x^{2} + 3 \, a c x + c\right )} \sqrt {-a^{2} c x^{2} + c}}{6 \, x^{3}}, \frac {6 \, a^{3} \sqrt {-c} c x^{3} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) + 3 \, a^{3} \sqrt {-c} c x^{3} \log \left (2 \, a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) - 2 \, {\left (2 \, a^{2} c x^{2} + 3 \, a c x + c\right )} \sqrt {-a^{2} c x^{2} + c}}{6 \, x^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^4,x, algorithm="fricas")

[Out]

[1/6*(6*a^3*c^(3/2)*x^3*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) + 3*a^3*c^(3/2)*x^3*log(-(a^2
*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) - 2*(2*a^2*c*x^2 + 3*a*c*x + c)*sqrt(-a^2*c*x^2 + c))/x^3,
 1/6*(6*a^3*sqrt(-c)*c*x^3*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c)/(a^2*c*x^2 - c)) + 3*a^3*sqrt(-c)*c*x^3*log(2*
a^2*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) - 2*(2*a^2*c*x^2 + 3*a*c*x + c)*sqrt(-a^2*c*x^2 + c))/x^3
]

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 8.00, size = 359, normalized size = 3.12 \begin {gather*} a^{2} c \left (\begin {cases} - \frac {i a^{2} \sqrt {c} x}{\sqrt {a^{2} x^{2} - 1}} + i a \sqrt {c} \operatorname {acosh}{\left (a x \right )} + \frac {i \sqrt {c}}{x \sqrt {a^{2} x^{2} - 1}} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\\frac {a^{2} \sqrt {c} x}{\sqrt {- a^{2} x^{2} + 1}} - a \sqrt {c} \operatorname {asin}{\left (a x \right )} - \frac {\sqrt {c}}{x \sqrt {- a^{2} x^{2} + 1}} & \text {otherwise} \end {cases}\right ) + 2 a c \left (\begin {cases} \frac {a^{2} \sqrt {c} \operatorname {acosh}{\left (\frac {1}{a x} \right )}}{2} + \frac {a \sqrt {c}}{2 x \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} - \frac {\sqrt {c}}{2 a x^{3} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\- \frac {i a^{2} \sqrt {c} \operatorname {asin}{\left (\frac {1}{a x} \right )}}{2} - \frac {i a \sqrt {c} \sqrt {1 - \frac {1}{a^{2} x^{2}}}}{2 x} & \text {otherwise} \end {cases}\right ) + c \left (\begin {cases} \frac {a^{3} \sqrt {c} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}}{3} - \frac {a \sqrt {c} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}}{3 x^{2}} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\\frac {i a^{3} \sqrt {c} \sqrt {1 - \frac {1}{a^{2} x^{2}}}}{3} - \frac {i a \sqrt {c} \sqrt {1 - \frac {1}{a^{2} x^{2}}}}{3 x^{2}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)**2/(-a**2*x**2+1)*(-a**2*c*x**2+c)**(3/2)/x**4,x)

[Out]

a**2*c*Piecewise((-I*a**2*sqrt(c)*x/sqrt(a**2*x**2 - 1) + I*a*sqrt(c)*acosh(a*x) + I*sqrt(c)/(x*sqrt(a**2*x**2
 - 1)), Abs(a**2*x**2) > 1), (a**2*sqrt(c)*x/sqrt(-a**2*x**2 + 1) - a*sqrt(c)*asin(a*x) - sqrt(c)/(x*sqrt(-a**
2*x**2 + 1)), True)) + 2*a*c*Piecewise((a**2*sqrt(c)*acosh(1/(a*x))/2 + a*sqrt(c)/(2*x*sqrt(-1 + 1/(a**2*x**2)
)) - sqrt(c)/(2*a*x**3*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2) > 1), (-I*a**2*sqrt(c)*asin(1/(a*x))/2 - I*
a*sqrt(c)*sqrt(1 - 1/(a**2*x**2))/(2*x), True)) + c*Piecewise((a**3*sqrt(c)*sqrt(-1 + 1/(a**2*x**2))/3 - a*sqr
t(c)*sqrt(-1 + 1/(a**2*x**2))/(3*x**2), 1/Abs(a**2*x**2) > 1), (I*a**3*sqrt(c)*sqrt(1 - 1/(a**2*x**2))/3 - I*a
*sqrt(c)*sqrt(1 - 1/(a**2*x**2))/(3*x**2), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 259 vs. \(2 (97) = 194\).
time = 0.43, size = 259, normalized size = 2.25 \begin {gather*} -\frac {2 \, a^{3} c^{2} \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {a^{4} \sqrt {-c} c \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}} - \frac {2 \, {\left (3 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{5} a^{3} c^{2} {\left | a \right |} + 6 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} a^{4} \sqrt {-c} c^{3} - 3 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )} a^{3} c^{4} {\left | a \right |} - 2 \, a^{4} \sqrt {-c} c^{4}\right )}}{3 \, {\left ({\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} - c\right )}^{3} {\left | a \right |}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)^2/(-a^2*x^2+1)*(-a^2*c*x^2+c)^(3/2)/x^4,x, algorithm="giac")

[Out]

-2*a^3*c^2*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) - a^4*sqrt(-c)*c*log(abs(-sqrt(-
a^2*c)*x + sqrt(-a^2*c*x^2 + c)))/abs(a) - 2/3*(3*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^5*a^3*c^2*abs(a) + 6
*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2*a^4*sqrt(-c)*c^3 - 3*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))*a^3*c^
4*abs(a) - 2*a^4*sqrt(-c)*c^4)/(((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)^3*abs(a))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {{\left (c-a^2\,c\,x^2\right )}^{3/2}\,{\left (a\,x+1\right )}^2}{x^4\,\left (a^2\,x^2-1\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((c - a^2*c*x^2)^(3/2)*(a*x + 1)^2)/(x^4*(a^2*x^2 - 1)),x)

[Out]

-int(((c - a^2*c*x^2)^(3/2)*(a*x + 1)^2)/(x^4*(a^2*x^2 - 1)), x)

________________________________________________________________________________________