3.3.21 \(\int \frac {e^{-3 \tanh ^{-1}(a x)}}{(c-a c x)^2} \, dx\) [221]

Optimal. Leaf size=28 \[ -\frac {1-a x}{a c^2 \sqrt {1-a^2 x^2}} \]

[Out]

(a*x-1)/a/c^2/(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6262, 651} \begin {gather*} -\frac {1-a x}{a c^2 \sqrt {1-a^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcTanh[a*x])*(c - a*c*x)^2),x]

[Out]

-((1 - a*x)/(a*c^2*Sqrt[1 - a^2*x^2]))

Rule 651

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[((-a)*e + c*d*x)/(a*c*Sqrt[a + c*x^2]),
 x] /; FreeQ[{a, c, d, e}, x]

Rule 6262

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {e^{-3 \tanh ^{-1}(a x)}}{(c-a c x)^2} \, dx &=\frac {\int \frac {c-a c x}{\left (1-a^2 x^2\right )^{3/2}} \, dx}{c^3}\\ &=-\frac {1-a x}{a c^2 \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 27, normalized size = 0.96 \begin {gather*} -\frac {\sqrt {1-a x}}{a c^2 \sqrt {1+a x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcTanh[a*x])*(c - a*c*x)^2),x]

[Out]

-(Sqrt[1 - a*x]/(a*c^2*Sqrt[1 + a*x]))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 3 vs. order 2.
time = 1.11, size = 766, normalized size = 27.36

method result size
trager \(-\frac {\sqrt {-a^{2} x^{2}+1}}{a \,c^{2} \left (a x +1\right )}\) \(28\)
gosper \(\frac {\left (-a^{2} x^{2}+1\right )^{\frac {3}{2}}}{\left (a x +1\right )^{2} c^{2} \left (a x -1\right ) a}\) \(34\)
default \(\frac {\frac {-\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x -\frac {1}{a}\right )^{2}}-3 a \left (\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}-a \left (-\frac {\left (-2 a^{2} \left (x -\frac {1}{a}\right )-2 a \right ) \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )}{8 a^{2}}+\frac {\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{16}+\frac {3 a \left (-\frac {\left (-2 a^{2} \left (x +\frac {1}{a}\right )+2 a \right ) \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )}{16}}{a}+\frac {-\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{3}}-2 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{2}}+3 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}+a \left (-\frac {\left (-2 a^{2} \left (x +\frac {1}{a}\right )+2 a \right ) \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )\right )}{4 a^{3}}+\frac {\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {5}{2}}}{a \left (x +\frac {1}{a}\right )^{2}}+3 a \left (\frac {\left (-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}+a \left (-\frac {\left (-2 a^{2} \left (x +\frac {1}{a}\right )+2 a \right ) \sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x +\frac {1}{a}\right )^{2}+2 a \left (x +\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )}{4 a^{2}}-\frac {3 \left (\frac {\left (-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )\right )^{\frac {3}{2}}}{3}-a \left (-\frac {\left (-2 a^{2} \left (x -\frac {1}{a}\right )-2 a \right ) \sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}{4 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} \left (x -\frac {1}{a}\right )^{2}-2 a \left (x -\frac {1}{a}\right )}}\right )}{2 \sqrt {a^{2}}}\right )\right )}{16 a}}{c^{2}}\) \(766\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

1/c^2*(1/8/a^2*(-1/a/(x-1/a)^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(5/2)-3*a*(1/3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/2)-
a*(-1/4*(-2*a^2*(x-1/a)-2*a)/a^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2
*(x-1/a)^2-2*a*(x-1/a))^(1/2)))))+3/16/a*(1/3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)+a*(-1/4*(-2*a^2*(x+1/a)+2*a)/
a^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)
)))+1/4/a^3*(-1/a/(x+1/a)^3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)-2*a*(1/a/(x+1/a)^2*(-a^2*(x+1/a)^2+2*a*(x+1/a))
^(5/2)+3*a*(1/3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)+a*(-1/4*(-2*a^2*(x+1/a)+2*a)/a^2*(-a^2*(x+1/a)^2+2*a*(x+1/a
))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))))))+1/4/a^2*(1/a/(x+1/a)^2*(
-a^2*(x+1/a)^2+2*a*(x+1/a))^(5/2)+3*a*(1/3*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(3/2)+a*(-1/4*(-2*a^2*(x+1/a)+2*a)/a^2
*(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x+1/a)^2+2*a*(x+1/a))^(1/2))))
)-3/16/a*(1/3*(-a^2*(x-1/a)^2-2*a*(x-1/a))^(3/2)-a*(-1/4*(-2*a^2*(x-1/a)-2*a)/a^2*(-a^2*(x-1/a)^2-2*a*(x-1/a))
^(1/2)+1/2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*(x-1/a)^2-2*a*(x-1/a))^(1/2)))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="maxima")

[Out]

integrate((-a^2*x^2 + 1)^(3/2)/((a*c*x - c)^2*(a*x + 1)^3), x)

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 35, normalized size = 1.25 \begin {gather*} -\frac {a x + \sqrt {-a^{2} x^{2} + 1} + 1}{a^{2} c^{2} x + a c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="fricas")

[Out]

-(a*x + sqrt(-a^2*x^2 + 1) + 1)/(a^2*c^2*x + a*c^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\sqrt {- a^{2} x^{2} + 1}}{a^{5} x^{5} + a^{4} x^{4} - 2 a^{3} x^{3} - 2 a^{2} x^{2} + a x + 1}\, dx + \int \left (- \frac {a^{2} x^{2} \sqrt {- a^{2} x^{2} + 1}}{a^{5} x^{5} + a^{4} x^{4} - 2 a^{3} x^{3} - 2 a^{2} x^{2} + a x + 1}\right )\, dx}{c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)**3*(-a**2*x**2+1)**(3/2)/(-a*c*x+c)**2,x)

[Out]

(Integral(sqrt(-a**2*x**2 + 1)/(a**5*x**5 + a**4*x**4 - 2*a**3*x**3 - 2*a**2*x**2 + a*x + 1), x) + Integral(-a
**2*x**2*sqrt(-a**2*x**2 + 1)/(a**5*x**5 + a**4*x**4 - 2*a**3*x**3 - 2*a**2*x**2 + a*x + 1), x))/c**2

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.43, size = 69, normalized size = 2.46 \begin {gather*} c^{2} {\left (\frac {i \, \mathrm {sgn}\left (\frac {1}{a c x - c}\right ) \mathrm {sgn}\left (a\right ) \mathrm {sgn}\left (c\right )}{a^{2} c^{4}} + \frac {\mathrm {sgn}\left (\frac {1}{a c x - c}\right ) \mathrm {sgn}\left (a\right ) \mathrm {sgn}\left (c\right )}{a^{2} c^{4} \sqrt {-\frac {2 \, c}{a c x - c} - 1}}\right )} {\left | a \right |} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x+1)^3*(-a^2*x^2+1)^(3/2)/(-a*c*x+c)^2,x, algorithm="giac")

[Out]

c^2*(I*sgn(1/(a*c*x - c))*sgn(a)*sgn(c)/(a^2*c^4) + sgn(1/(a*c*x - c))*sgn(a)*sgn(c)/(a^2*c^4*sqrt(-2*c/(a*c*x
 - c) - 1)))*abs(a)

________________________________________________________________________________________

Mupad [B]
time = 0.03, size = 46, normalized size = 1.64 \begin {gather*} \frac {\sqrt {1-a^2\,x^2}}{c^2\,\left (x\,\sqrt {-a^2}+\frac {\sqrt {-a^2}}{a}\right )\,\sqrt {-a^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - a^2*x^2)^(3/2)/((c - a*c*x)^2*(a*x + 1)^3),x)

[Out]

(1 - a^2*x^2)^(1/2)/(c^2*(x*(-a^2)^(1/2) + (-a^2)^(1/2)/a)*(-a^2)^(1/2))

________________________________________________________________________________________