3.3.98 \(\int e^{\tanh ^{-1}(a x)} (c-a c x)^2 \, dx\) [298]

Optimal. Leaf size=61 \[ \frac {1}{2} c^2 x \sqrt {1-a^2 x^2}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{3 a}+\frac {c^2 \text {ArcSin}(a x)}{2 a} \]

[Out]

1/3*c^2*(-a^2*x^2+1)^(3/2)/a+1/2*c^2*arcsin(a*x)/a+1/2*c^2*x*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6262, 655, 201, 222} \begin {gather*} \frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{3 a}+\frac {1}{2} c^2 x \sqrt {1-a^2 x^2}+\frac {c^2 \text {ArcSin}(a x)}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]*(c - a*c*x)^2,x]

[Out]

(c^2*x*Sqrt[1 - a^2*x^2])/2 + (c^2*(1 - a^2*x^2)^(3/2))/(3*a) + (c^2*ArcSin[a*x])/(2*a)

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 655

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e*((a + c*x^2)^(p + 1)/(2*c*(p + 1))),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 6262

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^n, Int[(c + d*x)^(p - n)*(1 -
 a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int e^{\tanh ^{-1}(a x)} (c-a c x)^2 \, dx &=c \int (c-a c x) \sqrt {1-a^2 x^2} \, dx\\ &=\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{3 a}+c^2 \int \sqrt {1-a^2 x^2} \, dx\\ &=\frac {1}{2} c^2 x \sqrt {1-a^2 x^2}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{3 a}+\frac {1}{2} c^2 \int \frac {1}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {1}{2} c^2 x \sqrt {1-a^2 x^2}+\frac {c^2 \left (1-a^2 x^2\right )^{3/2}}{3 a}+\frac {c^2 \sin ^{-1}(a x)}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 59, normalized size = 0.97 \begin {gather*} -\frac {c^2 \left (\sqrt {1-a^2 x^2} \left (-2-3 a x+2 a^2 x^2\right )+6 \text {ArcSin}\left (\frac {\sqrt {1-a x}}{\sqrt {2}}\right )\right )}{6 a} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]*(c - a*c*x)^2,x]

[Out]

-1/6*(c^2*(Sqrt[1 - a^2*x^2]*(-2 - 3*a*x + 2*a^2*x^2) + 6*ArcSin[Sqrt[1 - a*x]/Sqrt[2]]))/a

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(143\) vs. \(2(51)=102\).
time = 0.00, size = 144, normalized size = 2.36

method result size
risch \(\frac {\left (2 a^{2} x^{2}-3 a x -2\right ) \left (a^{2} x^{2}-1\right ) c^{2}}{6 a \sqrt {-a^{2} x^{2}+1}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right ) c^{2}}{2 \sqrt {a^{2}}}\) \(75\)
default \(c^{2} \left (a^{3} \left (-\frac {x^{2} \sqrt {-a^{2} x^{2}+1}}{3 a^{2}}-\frac {2 \sqrt {-a^{2} x^{2}+1}}{3 a^{4}}\right )-a^{2} \left (-\frac {x \sqrt {-a^{2} x^{2}+1}}{2 a^{2}}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a^{2} \sqrt {a^{2}}}\right )+\frac {\sqrt {-a^{2} x^{2}+1}}{a}+\frac {\arctan \left (\frac {\sqrt {a^{2}}\, x}{\sqrt {-a^{2} x^{2}+1}}\right )}{\sqrt {a^{2}}}\right )\) \(144\)
meijerg \(\frac {c^{2} \left (\frac {4 \sqrt {\pi }}{3}-\frac {\sqrt {\pi }\, \left (4 a^{2} x^{2}+8\right ) \sqrt {-a^{2} x^{2}+1}}{6}\right )}{2 a \sqrt {\pi }}+\frac {c^{2} \left (-\frac {\sqrt {\pi }\, x \left (-a^{2}\right )^{\frac {3}{2}} \sqrt {-a^{2} x^{2}+1}}{a^{2}}+\frac {\sqrt {\pi }\, \left (-a^{2}\right )^{\frac {3}{2}} \arcsin \left (a x \right )}{a^{3}}\right )}{2 \sqrt {\pi }\, \sqrt {-a^{2}}}+\frac {c^{2} \left (-2 \sqrt {\pi }+2 \sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}\right )}{2 a \sqrt {\pi }}+\frac {c^{2} \arcsin \left (a x \right )}{a}\) \(153\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

c^2*(a^3*(-1/3*x^2*(-a^2*x^2+1)^(1/2)/a^2-2/3*(-a^2*x^2+1)^(1/2)/a^4)-a^2*(-1/2*x*(-a^2*x^2+1)^(1/2)/a^2+1/2/a
^2/(a^2)^(1/2)*arctan((a^2)^(1/2)*x/(-a^2*x^2+1)^(1/2)))+(-a^2*x^2+1)^(1/2)/a+1/(a^2)^(1/2)*arctan((a^2)^(1/2)
*x/(-a^2*x^2+1)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.47, size = 72, normalized size = 1.18 \begin {gather*} -\frac {1}{3} \, \sqrt {-a^{2} x^{2} + 1} a c^{2} x^{2} + \frac {1}{2} \, \sqrt {-a^{2} x^{2} + 1} c^{2} x + \frac {c^{2} \arcsin \left (a x\right )}{2 \, a} + \frac {\sqrt {-a^{2} x^{2} + 1} c^{2}}{3 \, a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^2,x, algorithm="maxima")

[Out]

-1/3*sqrt(-a^2*x^2 + 1)*a*c^2*x^2 + 1/2*sqrt(-a^2*x^2 + 1)*c^2*x + 1/2*c^2*arcsin(a*x)/a + 1/3*sqrt(-a^2*x^2 +
 1)*c^2/a

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 70, normalized size = 1.15 \begin {gather*} -\frac {6 \, c^{2} \arctan \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{a x}\right ) + {\left (2 \, a^{2} c^{2} x^{2} - 3 \, a c^{2} x - 2 \, c^{2}\right )} \sqrt {-a^{2} x^{2} + 1}}{6 \, a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^2,x, algorithm="fricas")

[Out]

-1/6*(6*c^2*arctan((sqrt(-a^2*x^2 + 1) - 1)/(a*x)) + (2*a^2*c^2*x^2 - 3*a*c^2*x - 2*c^2)*sqrt(-a^2*x^2 + 1))/a

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 102 vs. \(2 (48) = 96\).
time = 3.05, size = 102, normalized size = 1.67 \begin {gather*} \begin {cases} \frac {c^{2} \sqrt {- a^{2} x^{2} + 1} - c^{2} \left (\begin {cases} - \frac {a x \sqrt {- a^{2} x^{2} + 1}}{2} + \frac {\operatorname {asin}{\left (a x \right )}}{2} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) + c^{2} \left (\begin {cases} \frac {\left (- a^{2} x^{2} + 1\right )^{\frac {3}{2}}}{3} - \sqrt {- a^{2} x^{2} + 1} & \text {for}\: a x > -1 \wedge a x < 1 \end {cases}\right ) + c^{2} \operatorname {asin}{\left (a x \right )}}{a} & \text {for}\: a \neq 0 \\c^{2} x & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)*(-a*c*x+c)**2,x)

[Out]

Piecewise(((c**2*sqrt(-a**2*x**2 + 1) - c**2*Piecewise((-a*x*sqrt(-a**2*x**2 + 1)/2 + asin(a*x)/2, (a*x > -1)
& (a*x < 1))) + c**2*Piecewise(((-a**2*x**2 + 1)**(3/2)/3 - sqrt(-a**2*x**2 + 1), (a*x > -1) & (a*x < 1))) + c
**2*asin(a*x))/a, Ne(a, 0)), (c**2*x, True))

________________________________________________________________________________________

Giac [A]
time = 0.42, size = 54, normalized size = 0.89 \begin {gather*} \frac {c^{2} \arcsin \left (a x\right ) \mathrm {sgn}\left (a\right )}{2 \, {\left | a \right |}} - \frac {1}{6} \, \sqrt {-a^{2} x^{2} + 1} {\left ({\left (2 \, a c^{2} x - 3 \, c^{2}\right )} x - \frac {2 \, c^{2}}{a}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)*(-a*c*x+c)^2,x, algorithm="giac")

[Out]

1/2*c^2*arcsin(a*x)*sgn(a)/abs(a) - 1/6*sqrt(-a^2*x^2 + 1)*((2*a*c^2*x - 3*c^2)*x - 2*c^2/a)

________________________________________________________________________________________

Mupad [B]
time = 0.00, size = 82, normalized size = 1.34 \begin {gather*} \frac {c^2\,x\,\sqrt {1-a^2\,x^2}}{2}+\frac {c^2\,\mathrm {asinh}\left (x\,\sqrt {-a^2}\right )}{2\,\sqrt {-a^2}}+\frac {c^2\,\sqrt {1-a^2\,x^2}}{3\,a}-\frac {a\,c^2\,x^2\,\sqrt {1-a^2\,x^2}}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c - a*c*x)^2*(a*x + 1))/(1 - a^2*x^2)^(1/2),x)

[Out]

(c^2*x*(1 - a^2*x^2)^(1/2))/2 + (c^2*asinh(x*(-a^2)^(1/2)))/(2*(-a^2)^(1/2)) + (c^2*(1 - a^2*x^2)^(1/2))/(3*a)
 - (a*c^2*x^2*(1 - a^2*x^2)^(1/2))/3

________________________________________________________________________________________