3.1.8 \(\int \frac {e^{\tanh ^{-1}(a x)}}{x^3} \, dx\) [8]

Optimal. Leaf size=64 \[ -\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {a \sqrt {1-a^2 x^2}}{x}-\frac {1}{2} a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right ) \]

[Out]

-1/2*a^2*arctanh((-a^2*x^2+1)^(1/2))-1/2*(-a^2*x^2+1)^(1/2)/x^2-a*(-a^2*x^2+1)^(1/2)/x

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {6259, 849, 821, 272, 65, 214} \begin {gather*} -\frac {a \sqrt {1-a^2 x^2}}{x}-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {1}{2} a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^ArcTanh[a*x]/x^3,x]

[Out]

-1/2*Sqrt[1 - a^2*x^2]/x^2 - (a*Sqrt[1 - a^2*x^2])/x - (a^2*ArcTanh[Sqrt[1 - a^2*x^2]])/2

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 849

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*
(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 6259

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/
2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(n - 1)/2]

Rubi steps

\begin {align*} \int \frac {e^{\tanh ^{-1}(a x)}}{x^3} \, dx &=\int \frac {1+a x}{x^3 \sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {1}{2} \int \frac {-2 a-a^2 x}{x^2 \sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {a \sqrt {1-a^2 x^2}}{x}+\frac {1}{2} a^2 \int \frac {1}{x \sqrt {1-a^2 x^2}} \, dx\\ &=-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {a \sqrt {1-a^2 x^2}}{x}+\frac {1}{4} a^2 \text {Subst}\left (\int \frac {1}{x \sqrt {1-a^2 x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {a \sqrt {1-a^2 x^2}}{x}-\frac {1}{2} \text {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2}} \, dx,x,\sqrt {1-a^2 x^2}\right )\\ &=-\frac {\sqrt {1-a^2 x^2}}{2 x^2}-\frac {a \sqrt {1-a^2 x^2}}{x}-\frac {1}{2} a^2 \tanh ^{-1}\left (\sqrt {1-a^2 x^2}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 58, normalized size = 0.91 \begin {gather*} \frac {1}{2} \left (-\frac {(1+2 a x) \sqrt {1-a^2 x^2}}{x^2}+a^2 \log (x)-a^2 \log \left (1+\sqrt {1-a^2 x^2}\right )\right ) \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcTanh[a*x]/x^3,x]

[Out]

(-(((1 + 2*a*x)*Sqrt[1 - a^2*x^2])/x^2) + a^2*Log[x] - a^2*Log[1 + Sqrt[1 - a^2*x^2]])/2

________________________________________________________________________________________

Maple [A]
time = 0.57, size = 55, normalized size = 0.86

method result size
default \(-\frac {\sqrt {-a^{2} x^{2}+1}}{2 x^{2}}-\frac {a^{2} \arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}-\frac {a \sqrt {-a^{2} x^{2}+1}}{x}\) \(55\)
risch \(\frac {2 a^{3} x^{3}+a^{2} x^{2}-2 a x -1}{2 x^{2} \sqrt {-a^{2} x^{2}+1}}-\frac {a^{2} \arctanh \left (\frac {1}{\sqrt {-a^{2} x^{2}+1}}\right )}{2}\) \(58\)
meijerg \(-\frac {a \sqrt {-a^{2} x^{2}+1}}{x}-\frac {a^{2} \left (-\frac {\sqrt {\pi }\, \left (-4 a^{2} x^{2}+8\right )}{8 a^{2} x^{2}}+\frac {\sqrt {\pi }\, \sqrt {-a^{2} x^{2}+1}}{a^{2} x^{2}}+\sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {-a^{2} x^{2}+1}}{2}\right )-\frac {\left (1-2 \ln \left (2\right )+2 \ln \left (x \right )+\ln \left (-a^{2}\right )\right ) \sqrt {\pi }}{2}+\frac {\sqrt {\pi }}{x^{2} a^{2}}\right )}{2 \sqrt {\pi }}\) \(124\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*(-a^2*x^2+1)^(1/2)/x^2-1/2*a^2*arctanh(1/(-a^2*x^2+1)^(1/2))-a*(-a^2*x^2+1)^(1/2)/x

________________________________________________________________________________________

Maxima [A]
time = 0.46, size = 67, normalized size = 1.05 \begin {gather*} -\frac {1}{2} \, a^{2} \log \left (\frac {2 \, \sqrt {-a^{2} x^{2} + 1}}{{\left | x \right |}} + \frac {2}{{\left | x \right |}}\right ) - \frac {\sqrt {-a^{2} x^{2} + 1} a}{x} - \frac {\sqrt {-a^{2} x^{2} + 1}}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3,x, algorithm="maxima")

[Out]

-1/2*a^2*log(2*sqrt(-a^2*x^2 + 1)/abs(x) + 2/abs(x)) - sqrt(-a^2*x^2 + 1)*a/x - 1/2*sqrt(-a^2*x^2 + 1)/x^2

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 52, normalized size = 0.81 \begin {gather*} \frac {a^{2} x^{2} \log \left (\frac {\sqrt {-a^{2} x^{2} + 1} - 1}{x}\right ) - \sqrt {-a^{2} x^{2} + 1} {\left (2 \, a x + 1\right )}}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3,x, algorithm="fricas")

[Out]

1/2*(a^2*x^2*log((sqrt(-a^2*x^2 + 1) - 1)/x) - sqrt(-a^2*x^2 + 1)*(2*a*x + 1))/x^2

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 1.86, size = 134, normalized size = 2.09 \begin {gather*} a \left (\begin {cases} - \frac {i \sqrt {a^{2} x^{2} - 1}}{x} & \text {for}\: \left |{a^{2} x^{2}}\right | > 1 \\- \frac {\sqrt {- a^{2} x^{2} + 1}}{x} & \text {otherwise} \end {cases}\right ) + \begin {cases} - \frac {a^{2} \operatorname {acosh}{\left (\frac {1}{a x} \right )}}{2} + \frac {a}{2 x \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} - \frac {1}{2 a x^{3} \sqrt {-1 + \frac {1}{a^{2} x^{2}}}} & \text {for}\: \frac {1}{\left |{a^{2} x^{2}}\right |} > 1 \\\frac {i a^{2} \operatorname {asin}{\left (\frac {1}{a x} \right )}}{2} - \frac {i a \sqrt {1 - \frac {1}{a^{2} x^{2}}}}{2 x} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a**2*x**2+1)**(1/2)/x**3,x)

[Out]

a*Piecewise((-I*sqrt(a**2*x**2 - 1)/x, Abs(a**2*x**2) > 1), (-sqrt(-a**2*x**2 + 1)/x, True)) + Piecewise((-a**
2*acosh(1/(a*x))/2 + a/(2*x*sqrt(-1 + 1/(a**2*x**2))) - 1/(2*a*x**3*sqrt(-1 + 1/(a**2*x**2))), 1/Abs(a**2*x**2
) > 1), (I*a**2*asin(1/(a*x))/2 - I*a*sqrt(1 - 1/(a**2*x**2))/(2*x), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 158 vs. \(2 (54) = 108\).
time = 0.42, size = 158, normalized size = 2.47 \begin {gather*} \frac {{\left (a^{3} + \frac {4 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a}{x}\right )} a^{4} x^{2}}{8 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} {\left | a \right |}} - \frac {a^{3} \log \left (\frac {{\left | -2 \, \sqrt {-a^{2} x^{2} + 1} {\left | a \right |} - 2 \, a \right |}}{2 \, a^{2} {\left | x \right |}}\right )}{2 \, {\left | a \right |}} - \frac {\frac {4 \, {\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )} a {\left | a \right |}}{x} + \frac {{\left (\sqrt {-a^{2} x^{2} + 1} {\left | a \right |} + a\right )}^{2} {\left | a \right |}}{a x^{2}}}{8 \, a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x+1)/(-a^2*x^2+1)^(1/2)/x^3,x, algorithm="giac")

[Out]

1/8*(a^3 + 4*(sqrt(-a^2*x^2 + 1)*abs(a) + a)*a/x)*a^4*x^2/((sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*abs(a)) - 1/2*a^3
*log(1/2*abs(-2*sqrt(-a^2*x^2 + 1)*abs(a) - 2*a)/(a^2*abs(x)))/abs(a) - 1/8*(4*(sqrt(-a^2*x^2 + 1)*abs(a) + a)
*a*abs(a)/x + (sqrt(-a^2*x^2 + 1)*abs(a) + a)^2*abs(a)/(a*x^2))/a^2

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 54, normalized size = 0.84 \begin {gather*} -\frac {a^2\,\mathrm {atanh}\left (\sqrt {1-a^2\,x^2}\right )}{2}-\frac {\sqrt {1-a^2\,x^2}}{2\,x^2}-\frac {a\,\sqrt {1-a^2\,x^2}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + 1)/(x^3*(1 - a^2*x^2)^(1/2)),x)

[Out]

- (a^2*atanh((1 - a^2*x^2)^(1/2)))/2 - (1 - a^2*x^2)^(1/2)/(2*x^2) - (a*(1 - a^2*x^2)^(1/2))/x

________________________________________________________________________________________