3.1.5 \(\int \frac {\tanh ^{-1}(\frac {\sqrt {e} x}{\sqrt {d+e x^2}})}{x^3} \, dx\) [5]

Optimal. Leaf size=53 \[ -\frac {\sqrt {e} \sqrt {d+e x^2}}{2 d x}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 x^2} \]

[Out]

-1/2*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^2-1/2*e^(1/2)*(e*x^2+d)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {6356, 270} \begin {gather*} -\frac {\sqrt {e} \sqrt {d+e x^2}}{2 d x}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^3,x]

[Out]

-1/2*(Sqrt[e]*Sqrt[d + e*x^2])/(d*x) - ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/(2*x^2)

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 6356

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcT
anh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
 FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^3} \, dx &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 x^2}+\frac {1}{2} \sqrt {e} \int \frac {1}{x^2 \sqrt {d+e x^2}} \, dx\\ &=-\frac {\sqrt {e} \sqrt {d+e x^2}}{2 d x}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 x^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 50, normalized size = 0.94 \begin {gather*} -\frac {\sqrt {e} x \sqrt {d+e x^2}+d \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 d x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^3,x]

[Out]

-1/2*(Sqrt[e]*x*Sqrt[d + e*x^2] + d*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/(d*x^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(110\) vs. \(2(41)=82\).
time = 0.01, size = 111, normalized size = 2.09

method result size
default \(-\frac {\arctanh \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{2 x^{2}}-\frac {e \ln \left (x \sqrt {e}+\sqrt {e \,x^{2}+d}\right )}{2 d}+\frac {\sqrt {e}\, \left (-\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{d x}+\frac {2 e \left (\frac {x \sqrt {e \,x^{2}+d}}{2}+\frac {d \ln \left (x \sqrt {e}+\sqrt {e \,x^{2}+d}\right )}{2 \sqrt {e}}\right )}{d}\right )}{2 d}\) \(111\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^2-1/2*e/d*ln(x*e^(1/2)+(e*x^2+d)^(1/2))+1/2*e^(1/2)/d*(-1/d/x*(e*x^2
+d)^(3/2)+2*e/d*(1/2*x*(e*x^2+d)^(1/2)+1/2/e^(1/2)*d*ln(x*e^(1/2)+(e*x^2+d)^(1/2))))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 50, normalized size = 0.94 \begin {gather*} -\frac {\operatorname {artanh}\left (\frac {x e^{\frac {1}{2}}}{\sqrt {x^{2} e + d}}\right )}{2 \, x^{2}} - \frac {x^{2} e^{\frac {3}{2}} + d e^{\frac {1}{2}}}{2 \, \sqrt {x^{2} e + d} d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3,x, algorithm="maxima")

[Out]

-1/2*arctanh(x*e^(1/2)/sqrt(x^2*e + d))/x^2 - 1/2*(x^2*e^(3/2) + d*e^(1/2))/(sqrt(x^2*e + d)*d*x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 129 vs. \(2 (41) = 82\).
time = 0.36, size = 129, normalized size = 2.43 \begin {gather*} -\frac {d \log \left (\frac {2 \, x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 4 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + 2 \, x^{2} \sinh \left (\frac {1}{2}\right )^{2} + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + d}{d}\right ) + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}}{4 \, d x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3,x, algorithm="fricas")

[Out]

-1/4*(d*log((2*x^2*cosh(1/2)^2 + 4*x^2*cosh(1/2)*sinh(1/2) + 2*x^2*sinh(1/2)^2 + 2*(x*cosh(1/2) + x*sinh(1/2))
*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + d)/d) + 2*(x*cosh(1/2) + x*sinh(1
/2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))))/(d*x^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}{\left (\frac {\sqrt {e} x}{\sqrt {d + e x^{2}}} \right )}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x**3,x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x**3, x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\mathrm {atanh}\left (\frac {\sqrt {e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^3,x)

[Out]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^3, x)

________________________________________________________________________________________