3.1.14 \(\int \frac {\tanh ^{-1}(\frac {\sqrt {e} x}{\sqrt {d+e x^2}})}{x^4} \, dx\) [14]

Optimal. Leaf size=85 \[ -\frac {\sqrt {e} \sqrt {d+e x^2}}{6 d x^2}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{6 d^{3/2}} \]

[Out]

-1/3*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3+1/6*e^(3/2)*arctanh((e*x^2+d)^(1/2)/d^(1/2))/d^(3/2)-1/6*e^(1/2)*(
e*x^2+d)^(1/2)/d/x^2

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6356, 272, 44, 65, 214} \begin {gather*} \frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{6 d^{3/2}}-\frac {\sqrt {e} \sqrt {d+e x^2}}{6 d x^2}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^4,x]

[Out]

-1/6*(Sqrt[e]*Sqrt[d + e*x^2])/(d*x^2) - ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/(3*x^3) + (e^(3/2)*ArcTanh[Sqrt[
d + e*x^2]/Sqrt[d]])/(6*d^(3/2))

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6356

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcT
anh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
 FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^4} \, dx &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}+\frac {1}{3} \sqrt {e} \int \frac {1}{x^3 \sqrt {d+e x^2}} \, dx\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}+\frac {1}{6} \sqrt {e} \text {Subst}\left (\int \frac {1}{x^2 \sqrt {d+e x}} \, dx,x,x^2\right )\\ &=-\frac {\sqrt {e} \sqrt {d+e x^2}}{6 d x^2}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}-\frac {e^{3/2} \text {Subst}\left (\int \frac {1}{x \sqrt {d+e x}} \, dx,x,x^2\right )}{12 d}\\ &=-\frac {\sqrt {e} \sqrt {d+e x^2}}{6 d x^2}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}-\frac {\sqrt {e} \text {Subst}\left (\int \frac {1}{-\frac {d}{e}+\frac {x^2}{e}} \, dx,x,\sqrt {d+e x^2}\right )}{6 d}\\ &=-\frac {\sqrt {e} \sqrt {d+e x^2}}{6 d x^2}-\frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^3}+\frac {e^{3/2} \tanh ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d}}\right )}{6 d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 92, normalized size = 1.08 \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )+\frac {\sqrt {e} x \left (\sqrt {d} \sqrt {d+e x^2}+e x^2 \log (x)-e x^2 \log \left (d+\sqrt {d} \sqrt {d+e x^2}\right )\right )}{d^{3/2}}}{6 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^4,x]

[Out]

-1/6*(2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]] + (Sqrt[e]*x*(Sqrt[d]*Sqrt[d + e*x^2] + e*x^2*Log[x] - e*x^2*Log[
d + Sqrt[d]*Sqrt[d + e*x^2]]))/d^(3/2))/x^3

________________________________________________________________________________________

Maple [A]
time = 0.01, size = 123, normalized size = 1.45

method result size
default \(-\frac {\arctanh \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{3 x^{3}}+\frac {e^{\frac {3}{2}} \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right )}{3 d^{\frac {3}{2}}}+\frac {\sqrt {e}\, \left (-\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{2 d \,x^{2}}+\frac {e \left (\sqrt {e \,x^{2}+d}-\sqrt {d}\, \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {e \,x^{2}+d}}{x}\right )\right )}{2 d}\right )}{3 d}\) \(123\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^4,x,method=_RETURNVERBOSE)

[Out]

-1/3*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^3+1/3*e^(3/2)/d^(3/2)*ln((2*d+2*d^(1/2)*(e*x^2+d)^(1/2))/x)+1/3*e^(1
/2)/d*(-1/2/d/x^2*(e*x^2+d)^(3/2)+1/2*e/d*((e*x^2+d)^(1/2)-d^(1/2)*ln((2*d+2*d^(1/2)*(e*x^2+d)^(1/2))/x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^4,x, algorithm="maxima")

[Out]

d*integrate(-1/3*e^(1/2*log(x^2*e + d) + 1/2)/(x^7*e^2 + d*x^5*e - (x^5*e + d*x^3)*(x^2*e + d)), x) - 1/6*(log
(x*e^(1/2) + sqrt(x^2*e + d)) - log(-x*e^(1/2) + sqrt(x^2*e + d)))/x^3

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (63) = 126\).
time = 0.38, size = 571, normalized size = 6.72 \begin {gather*} \left [\frac {2 \, d^{2} x^{3} \log \left (-x \cosh \left (\frac {1}{2}\right ) - x \sinh \left (\frac {1}{2}\right ) + \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}\right ) + {\left (x^{3} \cosh \left (\frac {1}{2}\right )^{3} + 3 \, x^{3} \cosh \left (\frac {1}{2}\right )^{2} \sinh \left (\frac {1}{2}\right ) + 3 \, x^{3} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right )^{2} + x^{3} \sinh \left (\frac {1}{2}\right )^{3}\right )} \sqrt {d} \log \left (\frac {\sqrt {d} + \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}}{x}\right ) + {\left (d^{2} x^{3} - d^{2}\right )} \log \left (\frac {2 \, x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 4 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + 2 \, x^{2} \sinh \left (\frac {1}{2}\right )^{2} + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + d}{d}\right ) - {\left (d x \cosh \left (\frac {1}{2}\right ) + d x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}}{6 \, d^{2} x^{3}}, \frac {2 \, d^{2} x^{3} \log \left (-x \cosh \left (\frac {1}{2}\right ) - x \sinh \left (\frac {1}{2}\right ) + \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}\right ) - 2 \, {\left (x^{3} \cosh \left (\frac {1}{2}\right )^{3} + 3 \, x^{3} \cosh \left (\frac {1}{2}\right )^{2} \sinh \left (\frac {1}{2}\right ) + 3 \, x^{3} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right )^{2} + x^{3} \sinh \left (\frac {1}{2}\right )^{3}\right )} \sqrt {-d} \arctan \left (-\frac {{\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right ) - \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}\right )} \sqrt {-d}}{d}\right ) + {\left (d^{2} x^{3} - d^{2}\right )} \log \left (\frac {2 \, x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 4 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + 2 \, x^{2} \sinh \left (\frac {1}{2}\right )^{2} + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + d}{d}\right ) - {\left (d x \cosh \left (\frac {1}{2}\right ) + d x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}}}{6 \, d^{2} x^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^4,x, algorithm="fricas")

[Out]

[1/6*(2*d^2*x^3*log(-x*cosh(1/2) - x*sinh(1/2) + sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) -
 sinh(1/2)))) + (x^3*cosh(1/2)^3 + 3*x^3*cosh(1/2)^2*sinh(1/2) + 3*x^3*cosh(1/2)*sinh(1/2)^2 + x^3*sinh(1/2)^3
)*sqrt(d)*log((sqrt(d) + sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))))/x) + (d^2*
x^3 - d^2)*log((2*x^2*cosh(1/2)^2 + 4*x^2*cosh(1/2)*sinh(1/2) + 2*x^2*sinh(1/2)^2 + 2*(x*cosh(1/2) + x*sinh(1/
2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + d)/d) - (d*x*cosh(1/2) + d*x*s
inh(1/2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))))/(d^2*x^3), 1/6*(2*d^2*x^3
*log(-x*cosh(1/2) - x*sinh(1/2) + sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2)))) -
 2*(x^3*cosh(1/2)^3 + 3*x^3*cosh(1/2)^2*sinh(1/2) + 3*x^3*cosh(1/2)*sinh(1/2)^2 + x^3*sinh(1/2)^3)*sqrt(-d)*ar
ctan(-(x*cosh(1/2) + x*sinh(1/2) - sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))))*
sqrt(-d)/d) + (d^2*x^3 - d^2)*log((2*x^2*cosh(1/2)^2 + 4*x^2*cosh(1/2)*sinh(1/2) + 2*x^2*sinh(1/2)^2 + 2*(x*co
sh(1/2) + x*sinh(1/2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + d)/d) - (d*
x*cosh(1/2) + d*x*sinh(1/2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))))/(d^2*x
^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}{\left (\frac {\sqrt {e} x}{\sqrt {d + e x^{2}}} \right )}}{x^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x**4,x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x**4, x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^4,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\mathrm {atanh}\left (\frac {\sqrt {e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^4,x)

[Out]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^4, x)

________________________________________________________________________________________