3.4.58 \(\int e^{c (a+b x)} \tanh ^{-1}(\coth (a c+b c x)) \, dx\) [358]

Optimal. Leaf size=45 \[ -\frac {e^{a c+b c x}}{b c}+\frac {e^{a c+b c x} \tanh ^{-1}(\coth (c (a+b x)))}{b c} \]

[Out]

-exp(b*c*x+a*c)/b/c+exp(b*c*x+a*c)*arctanh(coth(c*(b*x+a)))/b/c

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {2225, 6410} \begin {gather*} \frac {e^{a c+b c x} \tanh ^{-1}(\coth (c (a+b x)))}{b c}-\frac {e^{a c+b c x}}{b c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(c*(a + b*x))*ArcTanh[Coth[a*c + b*c*x]],x]

[Out]

-(E^(a*c + b*c*x)/(b*c)) + (E^(a*c + b*c*x)*ArcTanh[Coth[c*(a + b*x)]])/(b*c)

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6410

Int[((a_.) + ArcTanh[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[a + b*ArcTanh[u], w, x] - Di
st[b, Int[SimplifyIntegrand[w*(D[u, x]/(1 - u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b},
x] && InverseFunctionFreeQ[u, x] &&  !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[Func
tionOfLinear[v*(a + b*ArcTanh[u]), x]]

Rubi steps

\begin {align*} \int e^{c (a+b x)} \tanh ^{-1}(\coth (a c+b c x)) \, dx &=\frac {\text {Subst}\left (\int e^x \tanh ^{-1}(\coth (x)) \, dx,x,a c+b c x\right )}{b c}\\ &=\frac {e^{a c+b c x} \tanh ^{-1}(\coth (c (a+b x)))}{b c}-\frac {\text {Subst}\left (\int e^x \, dx,x,a c+b c x\right )}{b c}\\ &=-\frac {e^{a c+b c x}}{b c}+\frac {e^{a c+b c x} \tanh ^{-1}(\coth (c (a+b x)))}{b c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 46, normalized size = 1.02 \begin {gather*} \frac {e^{c (a+b x)} \left (-1+\tanh ^{-1}\left (\frac {1+e^{2 c (a+b x)}}{-1+e^{2 c (a+b x)}}\right )\right )}{b c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(c*(a + b*x))*ArcTanh[Coth[a*c + b*c*x]],x]

[Out]

(E^(c*(a + b*x))*(-1 + ArcTanh[(1 + E^(2*c*(a + b*x)))/(-1 + E^(2*c*(a + b*x)))]))/(b*c)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.14, size = 349, normalized size = 7.76

method result size
risch \(\frac {{\mathrm e}^{c \left (b x +a \right )} \ln \left ({\mathrm e}^{c \left (b x +a \right )}\right )}{c b}-\frac {i \left (\pi \mathrm {csgn}\left (i {\mathrm e}^{c \left (b x +a \right )}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 c \left (b x +a \right )}\right )-2 \pi \,\mathrm {csgn}\left (i {\mathrm e}^{c \left (b x +a \right )}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 c \left (b x +a \right )}\right )^{2}+\pi \mathrm {csgn}\left (i {\mathrm e}^{2 c \left (b x +a \right )}\right )^{3}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 c \left (b x +a \right )}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 c \left (b x +a \right )}}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 c \left (b x +a \right )}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 c \left (b x +a \right )}}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )^{3}-2 \pi \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 c \left (b x +a \right )}}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 c \left (b x +a \right )}}{{\mathrm e}^{2 c \left (b x +a \right )}-1}\right )^{3}-4 i+2 \pi \right ) {\mathrm e}^{c \left (b x +a \right )}}{4 c b}\) \(349\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c*(b*x+a))*arctanh(coth(b*c*x+a*c)),x,method=_RETURNVERBOSE)

[Out]

1/c/b*exp(c*(b*x+a))*ln(exp(c*(b*x+a)))-1/4*I*(Pi*csgn(I*exp(c*(b*x+a)))^2*csgn(I*exp(2*c*(b*x+a)))-2*Pi*csgn(
I*exp(c*(b*x+a)))*csgn(I*exp(2*c*(b*x+a)))^2+Pi*csgn(I*exp(2*c*(b*x+a)))^3+Pi*csgn(I*exp(2*c*(b*x+a)))*csgn(I/
(exp(2*c*(b*x+a))-1))*csgn(I*exp(2*c*(b*x+a))/(exp(2*c*(b*x+a))-1))-Pi*csgn(I*exp(2*c*(b*x+a)))*csgn(I*exp(2*c
*(b*x+a))/(exp(2*c*(b*x+a))-1))^2+2*Pi*csgn(I/(exp(2*c*(b*x+a))-1))^3-2*Pi*csgn(I/(exp(2*c*(b*x+a))-1))^2-Pi*c
sgn(I/(exp(2*c*(b*x+a))-1))*csgn(I*exp(2*c*(b*x+a))/(exp(2*c*(b*x+a))-1))^2+Pi*csgn(I*exp(2*c*(b*x+a))/(exp(2*
c*(b*x+a))-1))^3-4*I+2*Pi)/c/b*exp(c*(b*x+a))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 43, normalized size = 0.96 \begin {gather*} \frac {\operatorname {artanh}\left (\coth \left (b c x + a c\right )\right ) e^{\left ({\left (b x + a\right )} c\right )}}{b c} - \frac {e^{\left (b c x + a c\right )}}{b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))*arctanh(coth(b*c*x+a*c)),x, algorithm="maxima")

[Out]

arctanh(coth(b*c*x + a*c))*e^((b*x + a)*c)/(b*c) - e^(b*c*x + a*c)/(b*c)

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 25, normalized size = 0.56 \begin {gather*} \frac {{\left (b c x + a c - 1\right )} e^{\left (b c x + a c\right )}}{b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))*arctanh(coth(b*c*x+a*c)),x, algorithm="fricas")

[Out]

(b*c*x + a*c - 1)*e^(b*c*x + a*c)/(b*c)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{a c} \int e^{b c x} \operatorname {atanh}{\left (\coth {\left (a c + b c x \right )} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))*atanh(coth(b*c*x+a*c)),x)

[Out]

exp(a*c)*Integral(exp(b*c*x)*atanh(coth(a*c + b*c*x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 40, normalized size = 0.89 \begin {gather*} \frac {{\left (e^{\left (b c x\right )} \log \left (-e^{\left (2 \, b c x + 2 \, a c\right )}\right ) - 2 \, e^{\left (b c x\right )}\right )} e^{\left (a c\right )}}{2 \, b c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(c*(b*x+a))*arctanh(coth(b*c*x+a*c)),x, algorithm="giac")

[Out]

1/2*(e^(b*c*x)*log(-e^(2*b*c*x + 2*a*c)) - 2*e^(b*c*x))*e^(a*c)/(b*c)

________________________________________________________________________________________

Mupad [B]
time = 0.07, size = 28, normalized size = 0.62 \begin {gather*} \frac {{\mathrm {e}}^{a\,c+b\,c\,x}\,\left (\mathrm {atanh}\left (\mathrm {coth}\left (a\,c+b\,c\,x\right )\right )-1\right )}{b\,c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(c*(a + b*x))*atanh(coth(a*c + b*c*x)),x)

[Out]

(exp(a*c + b*c*x)*(atanh(coth(a*c + b*c*x)) - 1))/(b*c)

________________________________________________________________________________________