3.1.26 \(\int \frac {\tanh ^{-1}(\frac {\sqrt {e} x}{\sqrt {d+e x^2}})}{x^{5/2}} \, dx\) [26]

Optimal. Leaf size=272 \[ -\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}+\frac {4 e \sqrt {x} \sqrt {d+e x^2}}{3 d \left (\sqrt {d}+\sqrt {e} x\right )}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}-\frac {4 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}+\frac {2 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}} \]

[Out]

-2/3*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(3/2)-4/3*e^(1/2)*(e*x^2+d)^(1/2)/d/x^(1/2)+4/3*e*x^(1/2)*(e*x^2+d)^
(1/2)/d/(d^(1/2)+x*e^(1/2))-4/3*e^(3/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*
x^(1/2)/d^(1/4)))*EllipticE(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(d^(1/2)+x*e^(1/2))*((e*x^2+d)
/(d^(1/2)+x*e^(1/2))^2)^(1/2)/d^(3/4)/(e*x^2+d)^(1/2)+2/3*e^(3/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(
1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(d^(
1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/d^(3/4)/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 272, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6356, 331, 335, 311, 226, 1210} \begin {gather*} \frac {2 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}-\frac {4 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}+\frac {4 e \sqrt {x} \sqrt {d+e x^2}}{3 d \left (\sqrt {d}+\sqrt {e} x\right )}-\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(5/2),x]

[Out]

(-4*Sqrt[e]*Sqrt[d + e*x^2])/(3*d*Sqrt[x]) + (4*e*Sqrt[x]*Sqrt[d + e*x^2])/(3*d*(Sqrt[d] + Sqrt[e]*x)) - (2*Ar
cTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/(3*x^(3/2)) - (4*e^(3/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] +
 Sqrt[e]*x)^2]*EllipticE[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(3*d^(3/4)*Sqrt[d + e*x^2]) + (2*e^(3/4)*(
Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)],
1/2])/(3*d^(3/4)*Sqrt[d + e*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 311

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 6356

Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcT
anh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Dist[c/(d*(m + 1)), Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
 FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}+\frac {1}{3} \left (2 \sqrt {e}\right ) \int \frac {1}{x^{3/2} \sqrt {d+e x^2}} \, dx\\ &=-\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}+\frac {\left (2 e^{3/2}\right ) \int \frac {\sqrt {x}}{\sqrt {d+e x^2}} \, dx}{3 d}\\ &=-\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}+\frac {\left (4 e^{3/2}\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{3 d}\\ &=-\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}+\frac {(4 e) \text {Subst}\left (\int \frac {1}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{3 \sqrt {d}}-\frac {(4 e) \text {Subst}\left (\int \frac {1-\frac {\sqrt {e} x^2}{\sqrt {d}}}{\sqrt {d+e x^4}} \, dx,x,\sqrt {x}\right )}{3 \sqrt {d}}\\ &=-\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}+\frac {4 e \sqrt {x} \sqrt {d+e x^2}}{3 d \left (\sqrt {d}+\sqrt {e} x\right )}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}-\frac {4 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}+\frac {2 e^{3/4} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.11, size = 118, normalized size = 0.43 \begin {gather*} -\frac {4 \sqrt {e} \sqrt {d+e x^2}}{3 d \sqrt {x}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}+\frac {4 e^{3/2} x^{3/2} \sqrt {1+\frac {e x^2}{d}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-\frac {e x^2}{d}\right )}{9 d \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]]/x^(5/2),x]

[Out]

(-4*Sqrt[e]*Sqrt[d + e*x^2])/(3*d*Sqrt[x]) - (2*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/(3*x^(3/2)) + (4*e^(3/2)
*x^(3/2)*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F1[1/2, 3/4, 7/4, -((e*x^2)/d)])/(9*d*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.29, size = 0, normalized size = 0.00 \[\int \frac {\arctanh \left (\frac {x \sqrt {e}}{\sqrt {e \,x^{2}+d}}\right )}{x^{\frac {5}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x)

[Out]

int(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="maxima")

[Out]

2*d*integrate(-1/3*x*e^(1/2*log(x^2*e + d) + 1/2)/((x^4*e^2 + d*x^2*e)*x^(5/2) - (x^2*e + d)*e^(log(x^2*e + d)
 + 5/2*log(x))), x) - 1/3*log(x*e^(1/2) + sqrt(x^2*e + d))/x^(3/2) + 1/3*log(-x*e^(1/2) + sqrt(x^2*e + d))/x^(
3/2)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 208, normalized size = 0.76 \begin {gather*} -\frac {d \sqrt {x} \log \left (\frac {2 \, x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 4 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + 2 \, x^{2} \sinh \left (\frac {1}{2}\right )^{2} + 2 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + d}{d}\right ) + 4 \, {\left (x \cosh \left (\frac {1}{2}\right ) + x \sinh \left (\frac {1}{2}\right )\right )} \sqrt {x} \sqrt {\frac {{\left (x^{2} + d\right )} \cosh \left (\frac {1}{2}\right ) + {\left (x^{2} - d\right )} \sinh \left (\frac {1}{2}\right )}{\cosh \left (\frac {1}{2}\right ) - \sinh \left (\frac {1}{2}\right )}} + 4 \, {\left (x^{2} \cosh \left (\frac {1}{2}\right )^{2} + 2 \, x^{2} \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + x^{2} \sinh \left (\frac {1}{2}\right )^{2}\right )} {\rm weierstrassZeta}\left (-\frac {4 \, d}{\cosh \left (\frac {1}{2}\right )^{2} + 2 \, \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + \sinh \left (\frac {1}{2}\right )^{2}}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, d}{\cosh \left (\frac {1}{2}\right )^{2} + 2 \, \cosh \left (\frac {1}{2}\right ) \sinh \left (\frac {1}{2}\right ) + \sinh \left (\frac {1}{2}\right )^{2}}, 0, x\right )\right )}{3 \, d x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="fricas")

[Out]

-1/3*(d*sqrt(x)*log((2*x^2*cosh(1/2)^2 + 4*x^2*cosh(1/2)*sinh(1/2) + 2*x^2*sinh(1/2)^2 + 2*(x*cosh(1/2) + x*si
nh(1/2))*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + d)/d) + 4*(x*cosh(1/2) +
x*sinh(1/2))*sqrt(x)*sqrt(((x^2 + d)*cosh(1/2) + (x^2 - d)*sinh(1/2))/(cosh(1/2) - sinh(1/2))) + 4*(x^2*cosh(1
/2)^2 + 2*x^2*cosh(1/2)*sinh(1/2) + x^2*sinh(1/2)^2)*weierstrassZeta(-4*d/(cosh(1/2)^2 + 2*cosh(1/2)*sinh(1/2)
 + sinh(1/2)^2), 0, weierstrassPInverse(-4*d/(cosh(1/2)^2 + 2*cosh(1/2)*sinh(1/2) + sinh(1/2)^2), 0, x)))/(d*x
^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}{\left (\frac {\sqrt {e} x}{\sqrt {d + e x^{2}}} \right )}}{x^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(x*e**(1/2)/(e*x**2+d)**(1/2))/x**(5/2),x)

[Out]

Integral(atanh(sqrt(e)*x/sqrt(d + e*x**2))/x**(5/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="giac")

[Out]

integrate(arctanh(sqrt(e)*x/sqrt(e*x^2 + d))/x^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\mathrm {atanh}\left (\frac {\sqrt {e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(5/2),x)

[Out]

int(atanh((e^(1/2)*x)/(d + e*x^2)^(1/2))/x^(5/2), x)

________________________________________________________________________________________