3.1.49 \(\int \frac {\tanh ^{-1}(\tanh (a+b x))^2}{x} \, dx\) [49]

Optimal. Leaf size=49 \[ -b x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \tanh ^{-1}(\tanh (a+b x))^2+\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \log (x) \]

[Out]

-b*x*(b*x-arctanh(tanh(b*x+a)))+1/2*arctanh(tanh(b*x+a))^2+(b*x-arctanh(tanh(b*x+a)))^2*ln(x)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2190, 2189, 29} \begin {gather*} -b x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \tanh ^{-1}(\tanh (a+b x))^2+\log (x) \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]]^2/x,x]

[Out]

-(b*x*(b*x - ArcTanh[Tanh[a + b*x]])) + ArcTanh[Tanh[a + b*x]]^2/2 + (b*x - ArcTanh[Tanh[a + b*x]])^2*Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2189

Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[b*(x/a), x] - Dist[(b*u
- a*v)/a, Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2190

Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Dis
t[(b*u - a*v)/a, Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && Ne
Q[n, 1]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(\tanh (a+b x))^2}{x} \, dx &=\frac {1}{2} \tanh ^{-1}(\tanh (a+b x))^2-\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \int \frac {\tanh ^{-1}(\tanh (a+b x))}{x} \, dx\\ &=-b x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \tanh ^{-1}(\tanh (a+b x))^2-\left (\left (b x-\tanh ^{-1}(\tanh (a+b x))\right ) \left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )\right ) \int \frac {1}{x} \, dx\\ &=-b x \left (b x-\tanh ^{-1}(\tanh (a+b x))\right )+\frac {1}{2} \tanh ^{-1}(\tanh (a+b x))^2+\left (b x-\tanh ^{-1}(\tanh (a+b x))\right )^2 \log (x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 53, normalized size = 1.08 \begin {gather*} \frac {1}{2} (a+b x)^2-(a+b x) \left (a+2 b x-2 \tanh ^{-1}(\tanh (a+b x))\right )+\left (-b x+\tanh ^{-1}(\tanh (a+b x))\right )^2 \log (b x) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]]^2/x,x]

[Out]

(a + b*x)^2/2 - (a + b*x)*(a + 2*b*x - 2*ArcTanh[Tanh[a + b*x]]) + (-(b*x) + ArcTanh[Tanh[a + b*x]])^2*Log[b*x
]

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 78, normalized size = 1.59

method result size
default \(\ln \left (x \right ) \arctanh \left (\tanh \left (b x +a \right )\right )^{2}-2 b \left (\frac {b \,x^{2} \ln \left (x \right )}{2}-\frac {b \,x^{2}}{4}+\ln \left (x \right ) x a -x a +\ln \left (x \right ) x \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )-x \left (\arctanh \left (\tanh \left (b x +a \right )\right )-b x -a \right )\right )\) \(78\)
risch \(\text {Expression too large to display}\) \(2392\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a))^2/x,x,method=_RETURNVERBOSE)

[Out]

ln(x)*arctanh(tanh(b*x+a))^2-2*b*(1/2*b*x^2*ln(x)-1/4*b*x^2+ln(x)*x*a-x*a+ln(x)*x*(arctanh(tanh(b*x+a))-b*x-a)
-x*(arctanh(tanh(b*x+a))-b*x-a))

________________________________________________________________________________________

Maxima [A]
time = 0.66, size = 20, normalized size = 0.41 \begin {gather*} \frac {1}{2} \, b^{2} x^{2} + 2 \, a b x + a^{2} \log \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^2/x,x, algorithm="maxima")

[Out]

1/2*b^2*x^2 + 2*a*b*x + a^2*log(x)

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 20, normalized size = 0.41 \begin {gather*} \frac {1}{2} \, b^{2} x^{2} + 2 \, a b x + a^{2} \log \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^2/x,x, algorithm="fricas")

[Out]

1/2*b^2*x^2 + 2*a*b*x + a^2*log(x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a))**2/x,x)

[Out]

Integral(atanh(tanh(a + b*x))**2/x, x)

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 21, normalized size = 0.43 \begin {gather*} \frac {1}{2} \, b^{2} x^{2} + 2 \, a b x + a^{2} \log \left ({\left | x \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a))^2/x,x, algorithm="giac")

[Out]

1/2*b^2*x^2 + 2*a*b*x + a^2*log(abs(x))

________________________________________________________________________________________

Mupad [B]
time = 0.29, size = 183, normalized size = 3.73 \begin {gather*} \ln \left (x\right )\,\left (\frac {{\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}{4}-a\,\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+a^2\right )+\frac {b^2\,x^2}{2}-b\,x\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x))^2/x,x)

[Out]

log(x)*((2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b
*x)^2/4 - a*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) +
 2*b*x) + a^2) + (b^2*x^2)/2 - b*x*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*e
xp(2*b*x) + 1)) + 2*b*x)

________________________________________________________________________________________