\(\int \sqrt {x} \coth ^{-1}(\sqrt {x}) \, dx\) [90]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 12, antiderivative size = 31 \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {x}{3}+\frac {2}{3} x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )+\frac {1}{3} \log (1-x) \]

[Out]

1/3*x+2/3*x^(3/2)*arccoth(x^(1/2))+1/3*ln(1-x)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6038, 45} \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {2}{3} x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )+\frac {x}{3}+\frac {1}{3} \log (1-x) \]

[In]

Int[Sqrt[x]*ArcCoth[Sqrt[x]],x]

[Out]

x/3 + (2*x^(3/2)*ArcCoth[Sqrt[x]])/3 + Log[1 - x]/3

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6038

Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCoth[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rubi steps \begin{align*} \text {integral}& = \frac {2}{3} x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )-\frac {1}{3} \int \frac {x}{1-x} \, dx \\ & = \frac {2}{3} x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )-\frac {1}{3} \int \left (-1+\frac {1}{1-x}\right ) \, dx \\ & = \frac {x}{3}+\frac {2}{3} x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )+\frac {1}{3} \log (1-x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.81 \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {1}{3} \left (x+2 x^{3/2} \coth ^{-1}\left (\sqrt {x}\right )+\log (1-x)\right ) \]

[In]

Integrate[Sqrt[x]*ArcCoth[Sqrt[x]],x]

[Out]

(x + 2*x^(3/2)*ArcCoth[Sqrt[x]] + Log[1 - x])/3

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.97

method result size
derivativedivides \(\frac {2 x^{\frac {3}{2}} \operatorname {arccoth}\left (\sqrt {x}\right )}{3}+\frac {x}{3}+\frac {\ln \left (\sqrt {x}-1\right )}{3}+\frac {\ln \left (\sqrt {x}+1\right )}{3}\) \(30\)
default \(\frac {2 x^{\frac {3}{2}} \operatorname {arccoth}\left (\sqrt {x}\right )}{3}+\frac {x}{3}+\frac {\ln \left (\sqrt {x}-1\right )}{3}+\frac {\ln \left (\sqrt {x}+1\right )}{3}\) \(30\)

[In]

int(arccoth(x^(1/2))*x^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*x^(3/2)*arccoth(x^(1/2))+1/3*x+1/3*ln(x^(1/2)-1)+1/3*ln(x^(1/2)+1)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.97 \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {1}{3} \, x^{\frac {3}{2}} \log \left (\frac {x + 2 \, \sqrt {x} + 1}{x - 1}\right ) + \frac {1}{3} \, x + \frac {1}{3} \, \log \left (x - 1\right ) \]

[In]

integrate(arccoth(x^(1/2))*x^(1/2),x, algorithm="fricas")

[Out]

1/3*x^(3/2)*log((x + 2*sqrt(x) + 1)/(x - 1)) + 1/3*x + 1/3*log(x - 1)

Sympy [F]

\[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\int \sqrt {x} \operatorname {acoth}{\left (\sqrt {x} \right )}\, dx \]

[In]

integrate(acoth(x**(1/2))*x**(1/2),x)

[Out]

Integral(sqrt(x)*acoth(sqrt(x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.61 \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {2}{3} \, x^{\frac {3}{2}} \operatorname {arcoth}\left (\sqrt {x}\right ) + \frac {1}{3} \, x + \frac {1}{3} \, \log \left (x - 1\right ) \]

[In]

integrate(arccoth(x^(1/2))*x^(1/2),x, algorithm="maxima")

[Out]

2/3*x^(3/2)*arccoth(sqrt(x)) + 1/3*x + 1/3*log(x - 1)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 119 vs. \(2 (21) = 42\).

Time = 0.28 (sec) , antiderivative size = 119, normalized size of antiderivative = 3.84 \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\frac {2 \, {\left (\frac {3 \, {\left (\sqrt {x} + 1\right )}^{2}}{{\left (\sqrt {x} - 1\right )}^{2}} + 1\right )} \log \left (\frac {\sqrt {x} + 1}{\sqrt {x} - 1}\right )}{3 \, {\left (\frac {\sqrt {x} + 1}{\sqrt {x} - 1} - 1\right )}^{3}} + \frac {4 \, {\left (\sqrt {x} + 1\right )}}{3 \, {\left (\sqrt {x} - 1\right )} {\left (\frac {\sqrt {x} + 1}{\sqrt {x} - 1} - 1\right )}^{2}} + \frac {2}{3} \, \log \left (\frac {\sqrt {x} + 1}{{\left | \sqrt {x} - 1 \right |}}\right ) - \frac {2}{3} \, \log \left ({\left | \frac {\sqrt {x} + 1}{\sqrt {x} - 1} - 1 \right |}\right ) \]

[In]

integrate(arccoth(x^(1/2))*x^(1/2),x, algorithm="giac")

[Out]

2/3*(3*(sqrt(x) + 1)^2/(sqrt(x) - 1)^2 + 1)*log((sqrt(x) + 1)/(sqrt(x) - 1))/((sqrt(x) + 1)/(sqrt(x) - 1) - 1)
^3 + 4/3*(sqrt(x) + 1)/((sqrt(x) - 1)*((sqrt(x) + 1)/(sqrt(x) - 1) - 1)^2) + 2/3*log((sqrt(x) + 1)/abs(sqrt(x)
 - 1)) - 2/3*log(abs((sqrt(x) + 1)/(sqrt(x) - 1) - 1))

Mupad [F(-1)]

Timed out. \[ \int \sqrt {x} \coth ^{-1}\left (\sqrt {x}\right ) \, dx=\int \sqrt {x}\,\mathrm {acoth}\left (\sqrt {x}\right ) \,d x \]

[In]

int(x^(1/2)*acoth(x^(1/2)),x)

[Out]

int(x^(1/2)*acoth(x^(1/2)), x)