\(\int \frac {\coth ^{-1}(\sqrt {x})}{x^{3/2}} \, dx\) [92]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 12, antiderivative size = 24 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=-\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}}-\log (1-x)+\log (x) \]

[Out]

-ln(1-x)+ln(x)-2*arccoth(x^(1/2))/x^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6038, 36, 31, 29} \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=-\log (1-x)+\log (x)-\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}} \]

[In]

Int[ArcCoth[Sqrt[x]]/x^(3/2),x]

[Out]

(-2*ArcCoth[Sqrt[x]])/Sqrt[x] - Log[1 - x] + Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 6038

Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCoth[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}}+\int \frac {1}{(1-x) x} \, dx \\ & = -\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}}+\int \frac {1}{1-x} \, dx+\int \frac {1}{x} \, dx \\ & = -\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}}-\log (1-x)+\log (x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.00 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=-\frac {2 \coth ^{-1}\left (\sqrt {x}\right )}{\sqrt {x}}-\log (1-x)+\log (x) \]

[In]

Integrate[ArcCoth[Sqrt[x]]/x^(3/2),x]

[Out]

(-2*ArcCoth[Sqrt[x]])/Sqrt[x] - Log[1 - x] + Log[x]

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.21

method result size
derivativedivides \(-\frac {2 \,\operatorname {arccoth}\left (\sqrt {x}\right )}{\sqrt {x}}-\ln \left (\sqrt {x}-1\right )+\ln \left (x \right )-\ln \left (\sqrt {x}+1\right )\) \(29\)
default \(-\frac {2 \,\operatorname {arccoth}\left (\sqrt {x}\right )}{\sqrt {x}}-\ln \left (\sqrt {x}-1\right )+\ln \left (x \right )-\ln \left (\sqrt {x}+1\right )\) \(29\)

[In]

int(arccoth(x^(1/2))/x^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2*arccoth(x^(1/2))/x^(1/2)-ln(x^(1/2)-1)+ln(x)-ln(x^(1/2)+1)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 36, normalized size of antiderivative = 1.50 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=-\frac {x \log \left (x - 1\right ) - x \log \left (x\right ) + \sqrt {x} \log \left (\frac {x + 2 \, \sqrt {x} + 1}{x - 1}\right )}{x} \]

[In]

integrate(arccoth(x^(1/2))/x^(3/2),x, algorithm="fricas")

[Out]

-(x*log(x - 1) - x*log(x) + sqrt(x)*log((x + 2*sqrt(x) + 1)/(x - 1)))/x

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 126 vs. \(2 (20) = 40\).

Time = 0.40 (sec) , antiderivative size = 126, normalized size of antiderivative = 5.25 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=- \frac {2 x^{\frac {3}{2}} \operatorname {acoth}{\left (\sqrt {x} \right )}}{x^{2} - x} + \frac {2 \sqrt {x} \operatorname {acoth}{\left (\sqrt {x} \right )}}{x^{2} - x} + \frac {x^{2} \log {\left (x \right )}}{x^{2} - x} - \frac {2 x^{2} \log {\left (\sqrt {x} + 1 \right )}}{x^{2} - x} + \frac {2 x^{2} \operatorname {acoth}{\left (\sqrt {x} \right )}}{x^{2} - x} - \frac {x \log {\left (x \right )}}{x^{2} - x} + \frac {2 x \log {\left (\sqrt {x} + 1 \right )}}{x^{2} - x} - \frac {2 x \operatorname {acoth}{\left (\sqrt {x} \right )}}{x^{2} - x} \]

[In]

integrate(acoth(x**(1/2))/x**(3/2),x)

[Out]

-2*x**(3/2)*acoth(sqrt(x))/(x**2 - x) + 2*sqrt(x)*acoth(sqrt(x))/(x**2 - x) + x**2*log(x)/(x**2 - x) - 2*x**2*
log(sqrt(x) + 1)/(x**2 - x) + 2*x**2*acoth(sqrt(x))/(x**2 - x) - x*log(x)/(x**2 - x) + 2*x*log(sqrt(x) + 1)/(x
**2 - x) - 2*x*acoth(sqrt(x))/(x**2 - x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.75 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=-\frac {2 \, \operatorname {arcoth}\left (\sqrt {x}\right )}{\sqrt {x}} - \log \left (x - 1\right ) + \log \left (x\right ) \]

[In]

integrate(arccoth(x^(1/2))/x^(3/2),x, algorithm="maxima")

[Out]

-2*arccoth(sqrt(x))/sqrt(x) - log(x - 1) + log(x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 70 vs. \(2 (20) = 40\).

Time = 0.26 (sec) , antiderivative size = 70, normalized size of antiderivative = 2.92 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=\frac {2 \, \log \left (\frac {\sqrt {x} + 1}{\sqrt {x} - 1}\right )}{\frac {\sqrt {x} + 1}{\sqrt {x} - 1} + 1} - 2 \, \log \left (\frac {\sqrt {x} + 1}{{\left | \sqrt {x} - 1 \right |}}\right ) + 2 \, \log \left ({\left | \frac {\sqrt {x} + 1}{\sqrt {x} - 1} + 1 \right |}\right ) \]

[In]

integrate(arccoth(x^(1/2))/x^(3/2),x, algorithm="giac")

[Out]

2*log((sqrt(x) + 1)/(sqrt(x) - 1))/((sqrt(x) + 1)/(sqrt(x) - 1) + 1) - 2*log((sqrt(x) + 1)/abs(sqrt(x) - 1)) +
 2*log(abs((sqrt(x) + 1)/(sqrt(x) - 1) + 1))

Mupad [B] (verification not implemented)

Time = 3.94 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.92 \[ \int \frac {\coth ^{-1}\left (\sqrt {x}\right )}{x^{3/2}} \, dx=2\,\ln \left (\sqrt {x}\right )-\ln \left (x-1\right )-\frac {2\,\mathrm {acoth}\left (\sqrt {x}\right )}{\sqrt {x}} \]

[In]

int(acoth(x^(1/2))/x^(3/2),x)

[Out]

2*log(x^(1/2)) - log(x - 1) - (2*acoth(x^(1/2)))/x^(1/2)