\(\int (a+b \coth ^{-1}(c+d x))^2 \, dx\) [111]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 12, antiderivative size = 97 \[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {2 b \left (a+b \coth ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {b^2 \operatorname {PolyLog}\left (2,-\frac {1+c+d x}{1-c-d x}\right )}{d} \]

[Out]

(a+b*arccoth(d*x+c))^2/d+(d*x+c)*(a+b*arccoth(d*x+c))^2/d-2*b*(a+b*arccoth(d*x+c))*ln(2/(-d*x-c+1))/d-b^2*poly
log(2,(-d*x-c-1)/(-d*x-c+1))/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6239, 6022, 6132, 6056, 2449, 2352} \[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {2 b \log \left (\frac {2}{-c-d x+1}\right ) \left (a+b \coth ^{-1}(c+d x)\right )}{d}-\frac {b^2 \operatorname {PolyLog}\left (2,-\frac {c+d x+1}{-c-d x+1}\right )}{d} \]

[In]

Int[(a + b*ArcCoth[c + d*x])^2,x]

[Out]

(a + b*ArcCoth[c + d*x])^2/d + ((c + d*x)*(a + b*ArcCoth[c + d*x])^2)/d - (2*b*(a + b*ArcCoth[c + d*x])*Log[2/
(1 - c - d*x)])/d - (b^2*PolyLog[2, -((1 + c + d*x)/(1 - c - d*x))])/d

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 6022

Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcCoth[c*x^n])^p, x] - Dist[b
*c*n*p, Int[x^n*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p
, 0] && (EqQ[n, 1] || EqQ[p, 1])

Rule 6056

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcCoth[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6132

Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcCoth[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcCoth[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 6239

Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcCoth[x])^p, x
], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \left (a+b \coth ^{-1}(x)\right )^2 \, dx,x,c+d x\right )}{d} \\ & = \frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {(2 b) \text {Subst}\left (\int \frac {x \left (a+b \coth ^{-1}(x)\right )}{1-x^2} \, dx,x,c+d x\right )}{d} \\ & = \frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {(2 b) \text {Subst}\left (\int \frac {a+b \coth ^{-1}(x)}{1-x} \, dx,x,c+d x\right )}{d} \\ & = \frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {2 b \left (a+b \coth ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}+\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1-x}\right )}{1-x^2} \, dx,x,c+d x\right )}{d} \\ & = \frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {2 b \left (a+b \coth ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-c-d x}\right )}{d} \\ & = \frac {\left (a+b \coth ^{-1}(c+d x)\right )^2}{d}+\frac {(c+d x) \left (a+b \coth ^{-1}(c+d x)\right )^2}{d}-\frac {2 b \left (a+b \coth ^{-1}(c+d x)\right ) \log \left (\frac {2}{1-c-d x}\right )}{d}-\frac {b^2 \operatorname {PolyLog}\left (2,1-\frac {2}{1-c-d x}\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.14 \[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\frac {b^2 (-1+c+d x) \coth ^{-1}(c+d x)^2+2 b \coth ^{-1}(c+d x) \left (a c+a d x-b \log \left (1-e^{-2 \coth ^{-1}(c+d x)}\right )\right )+a \left (a c+a d x-2 b \log \left (\frac {1}{(c+d x) \sqrt {1-\frac {1}{(c+d x)^2}}}\right )\right )+b^2 \operatorname {PolyLog}\left (2,e^{-2 \coth ^{-1}(c+d x)}\right )}{d} \]

[In]

Integrate[(a + b*ArcCoth[c + d*x])^2,x]

[Out]

(b^2*(-1 + c + d*x)*ArcCoth[c + d*x]^2 + 2*b*ArcCoth[c + d*x]*(a*c + a*d*x - b*Log[1 - E^(-2*ArcCoth[c + d*x])
]) + a*(a*c + a*d*x - 2*b*Log[1/((c + d*x)*Sqrt[1 - (c + d*x)^(-2)])]) + b^2*PolyLog[2, E^(-2*ArcCoth[c + d*x]
)])/d

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.79

method result size
parts \(a^{2} x +\frac {b^{2} \left (\operatorname {arccoth}\left (d x +c \right )^{2} \left (d x +c -1\right )+2 \operatorname {arccoth}\left (d x +c \right )^{2}-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1-\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, \frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1+\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, -\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )\right )}{d}+\frac {2 a b \left (\left (d x +c \right ) \operatorname {arccoth}\left (d x +c \right )+\frac {\ln \left (\left (d x +c \right )^{2}-1\right )}{2}\right )}{d}\) \(174\)
derivativedivides \(\frac {\left (d x +c \right ) a^{2}+b^{2} \left (\operatorname {arccoth}\left (d x +c \right )^{2} \left (d x +c -1\right )+2 \operatorname {arccoth}\left (d x +c \right )^{2}-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1-\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, \frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1+\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, -\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )\right )+2 a b \left (d x +c \right ) \operatorname {arccoth}\left (d x +c \right )+a b \ln \left (\left (d x +c \right )^{2}-1\right )}{d}\) \(175\)
default \(\frac {\left (d x +c \right ) a^{2}+b^{2} \left (\operatorname {arccoth}\left (d x +c \right )^{2} \left (d x +c -1\right )+2 \operatorname {arccoth}\left (d x +c \right )^{2}-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1-\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, \frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \,\operatorname {arccoth}\left (d x +c \right ) \ln \left (1+\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )-2 \operatorname {polylog}\left (2, -\frac {1}{\sqrt {\frac {d x +c -1}{d x +c +1}}}\right )\right )+2 a b \left (d x +c \right ) \operatorname {arccoth}\left (d x +c \right )+a b \ln \left (\left (d x +c \right )^{2}-1\right )}{d}\) \(175\)
risch \(a^{2} x -\frac {b^{2} \ln \left (d x +c -1\right ) \ln \left (\frac {d x}{2}+\frac {c}{2}+\frac {1}{2}\right )}{d}+\frac {\ln \left (d x +c -1\right )^{2} b^{2} c}{4 d}-\ln \left (d x +c -1\right ) a b x +\frac {\ln \left (d x +c -1\right ) a b}{d}+\frac {a b \ln \left (d x +c +1\right )}{d}+\frac {a^{2} c}{d}+\left (-\frac {b^{2} x \ln \left (d x +c -1\right )}{2}+\frac {b \left (2 a d x -b \ln \left (d x +c -1\right ) c +b \ln \left (d x +c -1\right )\right )}{2 d}\right ) \ln \left (d x +c +1\right )+\frac {\left (d x +c +1\right ) b^{2} \ln \left (d x +c +1\right )^{2}}{4 d}+\frac {\ln \left (d x +c -1\right )^{2} b^{2} x}{4}-\frac {\ln \left (d x +c -1\right )^{2} b^{2}}{4 d}-\frac {b^{2} \operatorname {dilog}\left (\frac {d x}{2}+\frac {c}{2}+\frac {1}{2}\right )}{d}-\frac {a^{2}}{d}+\frac {a b \ln \left (d x +c +1\right ) c}{d}-\frac {\ln \left (d x +c -1\right ) a b c}{d}\) \(260\)

[In]

int((a+b*arccoth(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

a^2*x+b^2/d*(arccoth(d*x+c)^2*(d*x+c-1)+2*arccoth(d*x+c)^2-2*arccoth(d*x+c)*ln(1-1/((d*x+c-1)/(d*x+c+1))^(1/2)
)-2*polylog(2,1/((d*x+c-1)/(d*x+c+1))^(1/2))-2*arccoth(d*x+c)*ln(1+1/((d*x+c-1)/(d*x+c+1))^(1/2))-2*polylog(2,
-1/((d*x+c-1)/(d*x+c+1))^(1/2)))+2*a*b/d*((d*x+c)*arccoth(d*x+c)+1/2*ln((d*x+c)^2-1))

Fricas [F]

\[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\int { {\left (b \operatorname {arcoth}\left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((a+b*arccoth(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(b^2*arccoth(d*x + c)^2 + 2*a*b*arccoth(d*x + c) + a^2, x)

Sympy [F]

\[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\int \left (a + b \operatorname {acoth}{\left (c + d x \right )}\right )^{2}\, dx \]

[In]

integrate((a+b*acoth(d*x+c))**2,x)

[Out]

Integral((a + b*acoth(c + d*x))**2, x)

Maxima [F]

\[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\int { {\left (b \operatorname {arcoth}\left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((a+b*arccoth(d*x+c))^2,x, algorithm="maxima")

[Out]

a^2*x + 1/4*b^2*((d*x*log(d*x + c - 1)^2 + (d*x + c + 1)*log(d*x + c + 1)^2 - 2*(d*x + c - 1)*log(d*x + c + 1)
*log(d*x + c - 1))/d + integrate(2*(c^2 + (c*d - 3*d)*x - 2*c + 1)*log(d*x + c - 1)/(d^2*x^2 + 2*c*d*x + c^2 -
 1), x)) + (2*(d*x + c)*arccoth(d*x + c) + log(-(d*x + c)^2 + 1))*a*b/d

Giac [F]

\[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\int { {\left (b \operatorname {arcoth}\left (d x + c\right ) + a\right )}^{2} \,d x } \]

[In]

integrate((a+b*arccoth(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((b*arccoth(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \coth ^{-1}(c+d x)\right )^2 \, dx=\int {\left (a+b\,\mathrm {acoth}\left (c+d\,x\right )\right )}^2 \,d x \]

[In]

int((a + b*acoth(c + d*x))^2,x)

[Out]

int((a + b*acoth(c + d*x))^2, x)