\(\int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx\) [222]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 126 \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right )}{4 b}+\frac {x \operatorname {PolyLog}\left (3,(1+d) e^{2 a+2 b x}\right )}{4 b^2}-\frac {\operatorname {PolyLog}\left (4,(1+d) e^{2 a+2 b x}\right )}{8 b^3} \]

[Out]

1/12*b*x^4+1/3*x^3*arccoth(1+d+d*coth(b*x+a))-1/6*x^3*ln(1-(1+d)*exp(2*b*x+2*a))-1/4*x^2*polylog(2,(1+d)*exp(2
*b*x+2*a))/b+1/4*x*polylog(3,(1+d)*exp(2*b*x+2*a))/b^2-1/8*polylog(4,(1+d)*exp(2*b*x+2*a))/b^3

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {6377, 2215, 2221, 2611, 6744, 2320, 6724} \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=-\frac {\operatorname {PolyLog}\left (4,(d+1) e^{2 a+2 b x}\right )}{8 b^3}+\frac {x \operatorname {PolyLog}\left (3,(d+1) e^{2 a+2 b x}\right )}{4 b^2}-\frac {x^2 \operatorname {PolyLog}\left (2,(d+1) e^{2 a+2 b x}\right )}{4 b}-\frac {1}{6} x^3 \log \left (1-(d+1) e^{2 a+2 b x}\right )+\frac {1}{3} x^3 \coth ^{-1}(d \coth (a+b x)+d+1)+\frac {b x^4}{12} \]

[In]

Int[x^2*ArcCoth[1 + d + d*Coth[a + b*x]],x]

[Out]

(b*x^4)/12 + (x^3*ArcCoth[1 + d + d*Coth[a + b*x]])/3 - (x^3*Log[1 - (1 + d)*E^(2*a + 2*b*x)])/6 - (x^2*PolyLo
g[2, (1 + d)*E^(2*a + 2*b*x)])/(4*b) + (x*PolyLog[3, (1 + d)*E^(2*a + 2*b*x)])/(4*b^2) - PolyLog[4, (1 + d)*E^
(2*a + 2*b*x)]/(8*b^3)

Rule 2215

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Dist[b/a, Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n))
, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 2611

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Dist[g*(m/(b*c*n*Log[F])), Int[(f + g*
x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6377

Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
 + 1)*(ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + Dist[b/(f*(m + 1)), Int[(e + f*x)^(m + 1)/(c - d - c*E^
(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]

Rule 6724

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 6744

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Dist[f*(m/(b*c*p*Log[F])), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))+\frac {1}{3} b \int \frac {x^3}{1+(-1-d) e^{2 a+2 b x}} \, dx \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))+\frac {1}{3} (b (1+d)) \int \frac {e^{2 a+2 b x} x^3}{1+(-1-d) e^{2 a+2 b x}} \, dx \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )+\frac {1}{2} \int x^2 \log \left (1+(-1-d) e^{2 a+2 b x}\right ) \, dx \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right )}{4 b}+\frac {\int x \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right ) \, dx}{2 b} \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right )}{4 b}+\frac {x \operatorname {PolyLog}\left (3,(1+d) e^{2 a+2 b x}\right )}{4 b^2}-\frac {\int \operatorname {PolyLog}\left (3,(1+d) e^{2 a+2 b x}\right ) \, dx}{4 b^2} \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right )}{4 b}+\frac {x \operatorname {PolyLog}\left (3,(1+d) e^{2 a+2 b x}\right )}{4 b^2}-\frac {\text {Subst}\left (\int \frac {\operatorname {PolyLog}(3,(1+d) x)}{x} \, dx,x,e^{2 a+2 b x}\right )}{8 b^3} \\ & = \frac {b x^4}{12}+\frac {1}{3} x^3 \coth ^{-1}(1+d+d \coth (a+b x))-\frac {1}{6} x^3 \log \left (1-(1+d) e^{2 a+2 b x}\right )-\frac {x^2 \operatorname {PolyLog}\left (2,(1+d) e^{2 a+2 b x}\right )}{4 b}+\frac {x \operatorname {PolyLog}\left (3,(1+d) e^{2 a+2 b x}\right )}{4 b^2}-\frac {\operatorname {PolyLog}\left (4,(1+d) e^{2 a+2 b x}\right )}{8 b^3} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.95 \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\frac {8 b^3 x^3 \coth ^{-1}(1+d+d \coth (a+b x))-4 b^3 x^3 \log \left (1-\frac {e^{-2 (a+b x)}}{1+d}\right )+6 b^2 x^2 \operatorname {PolyLog}\left (2,\frac {e^{-2 (a+b x)}}{1+d}\right )+6 b x \operatorname {PolyLog}\left (3,\frac {e^{-2 (a+b x)}}{1+d}\right )+3 \operatorname {PolyLog}\left (4,\frac {e^{-2 (a+b x)}}{1+d}\right )}{24 b^3} \]

[In]

Integrate[x^2*ArcCoth[1 + d + d*Coth[a + b*x]],x]

[Out]

(8*b^3*x^3*ArcCoth[1 + d + d*Coth[a + b*x]] - 4*b^3*x^3*Log[1 - 1/((1 + d)*E^(2*(a + b*x)))] + 6*b^2*x^2*PolyL
og[2, 1/((1 + d)*E^(2*(a + b*x)))] + 6*b*x*PolyLog[3, 1/((1 + d)*E^(2*(a + b*x)))] + 3*PolyLog[4, 1/((1 + d)*E
^(2*(a + b*x)))])/(24*b^3)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.98 (sec) , antiderivative size = 1599, normalized size of antiderivative = 12.69

method result size
risch \(\text {Expression too large to display}\) \(1599\)

[In]

int(x^2*arccoth(1+d+d*coth(b*x+a)),x,method=_RETURNVERBOSE)

[Out]

1/12*b*x^4-1/3*x^3*ln(exp(b*x+a))-1/4/b*d/(1+d)*polylog(2,(1+d)*exp(2*b*x+2*a))*x^2+1/3/b^3*d/(1+d)*ln(1-(1+d)
*exp(2*b*x+2*a))*a^3+1/4/b^3*d/(1+d)*polylog(2,(1+d)*exp(2*b*x+2*a))*a^2+1/4/b^2*d/(1+d)*polylog(3,(1+d)*exp(2
*b*x+2*a))*x-1/2/b^2*a^2/(1+d)*x*ln(1-exp(b*x+a)*(1+d)^(1/2))-1/2/b^2*a^2/(1+d)*x*ln(1+exp(b*x+a)*(1+d)^(1/2))
+1/6/b^3*d*a^3/(1+d)*ln(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1)-1/2/b^3*a^3*d/(1+d)*ln(1-exp(b*x+a)*(1+d)^(1/2))-1/
2/b^3*a^3*d/(1+d)*ln(1+exp(b*x+a)*(1+d)^(1/2))-1/2/b^3*a^2*d/(1+d)*dilog(1-exp(b*x+a)*(1+d)^(1/2))-1/2/b^3*a^2
*d/(1+d)*dilog(1+exp(b*x+a)*(1+d)^(1/2))+1/2/b^2/(1+d)*ln(1-(1+d)*exp(2*b*x+2*a))*a^2*x-1/8/b^3/(1+d)*polylog(
4,(1+d)*exp(2*b*x+2*a))-1/6/(1+d)*ln(1-(1+d)*exp(2*b*x+2*a))*x^3-1/4/b/(1+d)*polylog(2,(1+d)*exp(2*b*x+2*a))*x
^2+1/3/b^3/(1+d)*ln(1-(1+d)*exp(2*b*x+2*a))*a^3+1/4/b^3/(1+d)*polylog(2,(1+d)*exp(2*b*x+2*a))*a^2+1/4/b^2/(1+d
)*polylog(3,(1+d)*exp(2*b*x+2*a))*x-1/8/b^3*d/(1+d)*polylog(4,(1+d)*exp(2*b*x+2*a))-1/2/b^3*a^3/(1+d)*ln(1-exp
(b*x+a)*(1+d)^(1/2))-1/2/b^3*a^3/(1+d)*ln(1+exp(b*x+a)*(1+d)^(1/2))-1/2/b^3*a^2/(1+d)*dilog(1-exp(b*x+a)*(1+d)
^(1/2))-1/2/b^3*a^2/(1+d)*dilog(1+exp(b*x+a)*(1+d)^(1/2))-1/6*d/(1+d)*ln(1-(1+d)*exp(2*b*x+2*a))*x^3+1/6/b^3*a
^3/(1+d)*ln(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1)-1/2/b^2*a^2*d/(1+d)*x*ln(1-exp(b*x+a)*(1+d)^(1/2))-1/2/b^2*a^2*
d/(1+d)*x*ln(1+exp(b*x+a)*(1+d)^(1/2))+1/2/b^2*d/(1+d)*ln(1-(1+d)*exp(2*b*x+2*a))*a^2*x-1/12*(-I*Pi*csgn(I*d/(
exp(2*b*x+2*a)-1)*exp(2*b*x+2*a))^3+I*Pi*csgn(I/(exp(2*b*x+2*a)-1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))^
2+2*I*Pi*csgn(I*exp(b*x+a))*csgn(I*exp(2*b*x+2*a))^2+I*Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))*csgn(I*d/(
exp(2*b*x+2*a)-1)*exp(2*b*x+2*a))^2+I*Pi*csgn(I*exp(2*b*x+2*a))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))^2-I*
Pi*csgn(I*exp(2*b*x+2*a))*csgn(I/(exp(2*b*x+2*a)-1))*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))+I*Pi*csgn(I*d)*
csgn(I*d/(exp(2*b*x+2*a)-1)*exp(2*b*x+2*a))^2-I*Pi*csgn(I*exp(b*x+a))^2*csgn(I*exp(2*b*x+2*a))-I*Pi*csgn(I/(ex
p(2*b*x+2*a)-1))*csgn(I/(exp(2*b*x+2*a)-1)*(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1))^2-I*Pi*csgn(I*exp(2*b*x+2*a))^
3-I*Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))*csgn(I*d)*csgn(I*d/(exp(2*b*x+2*a)-1)*exp(2*b*x+2*a))+I*Pi*cs
gn(I/(exp(2*b*x+2*a)-1)*(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1))^3-I*Pi*csgn(I*exp(2*b*x+2*a)/(exp(2*b*x+2*a)-1))^
3+I*Pi*csgn(I/(exp(2*b*x+2*a)-1))*csgn(I*(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1))*csgn(I/(exp(2*b*x+2*a)-1)*(d*exp
(2*b*x+2*a)+exp(2*b*x+2*a)-1))-I*Pi*csgn(I*(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1))*csgn(I/(exp(2*b*x+2*a)-1)*(d*e
xp(2*b*x+2*a)+exp(2*b*x+2*a)-1))^2+2*ln(d))*x^3+1/6*x^3*ln(d*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 359 vs. \(2 (109) = 218\).

Time = 0.28 (sec) , antiderivative size = 359, normalized size of antiderivative = 2.85 \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\frac {b^{4} x^{4} + 2 \, b^{3} x^{3} \log \left (\frac {d \cosh \left (b x + a\right ) + {\left (d + 2\right )} \sinh \left (b x + a\right )}{d \cosh \left (b x + a\right ) + d \sinh \left (b x + a\right )}\right ) - 6 \, b^{2} x^{2} {\rm Li}_2\left (\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 6 \, b^{2} x^{2} {\rm Li}_2\left (-\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) + 2 \, a^{3} \log \left (2 \, {\left (d + 1\right )} \cosh \left (b x + a\right ) + 2 \, {\left (d + 1\right )} \sinh \left (b x + a\right ) + 2 \, \sqrt {d + 1}\right ) + 2 \, a^{3} \log \left (2 \, {\left (d + 1\right )} \cosh \left (b x + a\right ) + 2 \, {\left (d + 1\right )} \sinh \left (b x + a\right ) - 2 \, \sqrt {d + 1}\right ) + 12 \, b x {\rm polylog}\left (3, \sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) + 12 \, b x {\rm polylog}\left (3, -\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 2 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} + 1\right ) - 2 \, {\left (b^{3} x^{3} + a^{3}\right )} \log \left (-\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )} + 1\right ) - 12 \, {\rm polylog}\left (4, \sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right ) - 12 \, {\rm polylog}\left (4, -\sqrt {d + 1} {\left (\cosh \left (b x + a\right ) + \sinh \left (b x + a\right )\right )}\right )}{12 \, b^{3}} \]

[In]

integrate(x^2*arccoth(1+d+d*coth(b*x+a)),x, algorithm="fricas")

[Out]

1/12*(b^4*x^4 + 2*b^3*x^3*log((d*cosh(b*x + a) + (d + 2)*sinh(b*x + a))/(d*cosh(b*x + a) + d*sinh(b*x + a))) -
 6*b^2*x^2*dilog(sqrt(d + 1)*(cosh(b*x + a) + sinh(b*x + a))) - 6*b^2*x^2*dilog(-sqrt(d + 1)*(cosh(b*x + a) +
sinh(b*x + a))) + 2*a^3*log(2*(d + 1)*cosh(b*x + a) + 2*(d + 1)*sinh(b*x + a) + 2*sqrt(d + 1)) + 2*a^3*log(2*(
d + 1)*cosh(b*x + a) + 2*(d + 1)*sinh(b*x + a) - 2*sqrt(d + 1)) + 12*b*x*polylog(3, sqrt(d + 1)*(cosh(b*x + a)
 + sinh(b*x + a))) + 12*b*x*polylog(3, -sqrt(d + 1)*(cosh(b*x + a) + sinh(b*x + a))) - 2*(b^3*x^3 + a^3)*log(s
qrt(d + 1)*(cosh(b*x + a) + sinh(b*x + a)) + 1) - 2*(b^3*x^3 + a^3)*log(-sqrt(d + 1)*(cosh(b*x + a) + sinh(b*x
 + a)) + 1) - 12*polylog(4, sqrt(d + 1)*(cosh(b*x + a) + sinh(b*x + a))) - 12*polylog(4, -sqrt(d + 1)*(cosh(b*
x + a) + sinh(b*x + a))))/b^3

Sympy [F]

\[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\int x^{2} \operatorname {acoth}{\left (d \coth {\left (a + b x \right )} + d + 1 \right )}\, dx \]

[In]

integrate(x**2*acoth(1+d+d*coth(b*x+a)),x)

[Out]

Integral(x**2*acoth(d*coth(a + b*x) + d + 1), x)

Maxima [A] (verification not implemented)

none

Time = 0.77 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.98 \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\frac {1}{3} \, x^{3} \operatorname {arcoth}\left (d \coth \left (b x + a\right ) + d + 1\right ) + \frac {1}{36} \, {\left (\frac {3 \, x^{4}}{d} - \frac {2 \, {\left (4 \, b^{3} x^{3} \log \left (-{\left (d + 1\right )} e^{\left (2 \, b x + 2 \, a\right )} + 1\right ) + 6 \, b^{2} x^{2} {\rm Li}_2\left ({\left (d + 1\right )} e^{\left (2 \, b x + 2 \, a\right )}\right ) - 6 \, b x {\rm Li}_{3}({\left (d + 1\right )} e^{\left (2 \, b x + 2 \, a\right )}) + 3 \, {\rm Li}_{4}({\left (d + 1\right )} e^{\left (2 \, b x + 2 \, a\right )})\right )}}{b^{4} d}\right )} b d \]

[In]

integrate(x^2*arccoth(1+d+d*coth(b*x+a)),x, algorithm="maxima")

[Out]

1/3*x^3*arccoth(d*coth(b*x + a) + d + 1) + 1/36*(3*x^4/d - 2*(4*b^3*x^3*log(-(d + 1)*e^(2*b*x + 2*a) + 1) + 6*
b^2*x^2*dilog((d + 1)*e^(2*b*x + 2*a)) - 6*b*x*polylog(3, (d + 1)*e^(2*b*x + 2*a)) + 3*polylog(4, (d + 1)*e^(2
*b*x + 2*a)))/(b^4*d))*b*d

Giac [F]

\[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\int { x^{2} \operatorname {arcoth}\left (d \coth \left (b x + a\right ) + d + 1\right ) \,d x } \]

[In]

integrate(x^2*arccoth(1+d+d*coth(b*x+a)),x, algorithm="giac")

[Out]

integrate(x^2*arccoth(d*coth(b*x + a) + d + 1), x)

Mupad [F(-1)]

Timed out. \[ \int x^2 \coth ^{-1}(1+d+d \coth (a+b x)) \, dx=\int x^2\,\mathrm {acoth}\left (d+d\,\mathrm {coth}\left (a+b\,x\right )+1\right ) \,d x \]

[In]

int(x^2*acoth(d + d*coth(a + b*x) + 1),x)

[Out]

int(x^2*acoth(d + d*coth(a + b*x) + 1), x)