\(\int \frac {\coth ^{-1}(a+b x)}{x} \, dx\) [66]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 92 \[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=-\coth ^{-1}(a+b x) \log \left (\frac {2}{1+a+b x}\right )+\coth ^{-1}(a+b x) \log \left (\frac {2 b x}{(1-a) (1+a+b x)}\right )+\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2}{1+a+b x}\right )-\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (1+a+b x)}\right ) \]

[Out]

-arccoth(b*x+a)*ln(2/(b*x+a+1))+arccoth(b*x+a)*ln(2*b*x/(1-a)/(b*x+a+1))+1/2*polylog(2,1-2/(b*x+a+1))-1/2*poly
log(2,1-2*b*x/(1-a)/(b*x+a+1))

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6247, 6058, 2449, 2352, 2497} \[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2}{a+b x+1}\right )-\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (a+b x+1)}\right )+\log \left (\frac {2}{a+b x+1}\right ) \left (-\coth ^{-1}(a+b x)\right )+\log \left (\frac {2 b x}{(1-a) (a+b x+1)}\right ) \coth ^{-1}(a+b x) \]

[In]

Int[ArcCoth[a + b*x]/x,x]

[Out]

-(ArcCoth[a + b*x]*Log[2/(1 + a + b*x)]) + ArcCoth[a + b*x]*Log[(2*b*x)/((1 - a)*(1 + a + b*x))] + PolyLog[2,
1 - 2/(1 + a + b*x)]/2 - PolyLog[2, 1 - (2*b*x)/((1 - a)*(1 + a + b*x))]/2

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2497

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/D[u, x])]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 6058

Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x]))*(Log[2/
(1 + c*x)]/e), x] + (Dist[b*(c/e), Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x], x] - Dist[b*(c/e), Int[Log[2*c*((d
+ e*x)/((c*d + e)*(1 + c*x)))]/(1 - c^2*x^2), x], x] + Simp[(a + b*ArcCoth[c*x])*(Log[2*c*((d + e*x)/((c*d + e
)*(1 + c*x)))]/e), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]

Rule 6247

Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &
& IGtQ[p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\coth ^{-1}(x)}{-\frac {a}{b}+\frac {x}{b}} \, dx,x,a+b x\right )}{b} \\ & = -\coth ^{-1}(a+b x) \log \left (\frac {2}{1+a+b x}\right )+\coth ^{-1}(a+b x) \log \left (\frac {2 b x}{(1-a) (1+a+b x)}\right )+\text {Subst}\left (\int \frac {\log \left (\frac {2}{1+x}\right )}{1-x^2} \, dx,x,a+b x\right )-\text {Subst}\left (\int \frac {\log \left (\frac {2 \left (-\frac {a}{b}+\frac {x}{b}\right )}{\left (\frac {1}{b}-\frac {a}{b}\right ) (1+x)}\right )}{1-x^2} \, dx,x,a+b x\right ) \\ & = -\coth ^{-1}(a+b x) \log \left (\frac {2}{1+a+b x}\right )+\coth ^{-1}(a+b x) \log \left (\frac {2 b x}{(1-a) (1+a+b x)}\right )-\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (1+a+b x)}\right )+\text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1+a+b x}\right ) \\ & = -\coth ^{-1}(a+b x) \log \left (\frac {2}{1+a+b x}\right )+\coth ^{-1}(a+b x) \log \left (\frac {2 b x}{(1-a) (1+a+b x)}\right )+\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2}{1+a+b x}\right )-\frac {1}{2} \operatorname {PolyLog}\left (2,1-\frac {2 b x}{(1-a) (1+a+b x)}\right ) \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.12 (sec) , antiderivative size = 259, normalized size of antiderivative = 2.82 \[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\left (\coth ^{-1}(a+b x)-\text {arctanh}(a+b x)\right ) \log (x)+\text {arctanh}(a+b x) \left (-\log \left (\frac {1}{\sqrt {1-(a+b x)^2}}\right )+\log (-i \sinh (\text {arctanh}(a)-\text {arctanh}(a+b x)))\right )+\frac {1}{8} \left (4 (\text {arctanh}(a)-\text {arctanh}(a+b x))^2-(\pi -2 i \text {arctanh}(a+b x))^2-8 (\text {arctanh}(a)-\text {arctanh}(a+b x)) \log \left (1-e^{2 \text {arctanh}(a)-2 \text {arctanh}(a+b x)}\right )-4 i (\pi -2 i \text {arctanh}(a+b x)) \log \left (1+e^{2 \text {arctanh}(a+b x)}\right )+4 (i \pi +2 \text {arctanh}(a+b x)) \log \left (\frac {2}{\sqrt {1-(a+b x)^2}}\right )+8 (\text {arctanh}(a)-\text {arctanh}(a+b x)) \log (-2 i \sinh (\text {arctanh}(a)-\text {arctanh}(a+b x)))-4 \operatorname {PolyLog}\left (2,e^{2 \text {arctanh}(a)-2 \text {arctanh}(a+b x)}\right )-4 \operatorname {PolyLog}\left (2,-e^{2 \text {arctanh}(a+b x)}\right )\right ) \]

[In]

Integrate[ArcCoth[a + b*x]/x,x]

[Out]

(ArcCoth[a + b*x] - ArcTanh[a + b*x])*Log[x] + ArcTanh[a + b*x]*(-Log[1/Sqrt[1 - (a + b*x)^2]] + Log[(-I)*Sinh
[ArcTanh[a] - ArcTanh[a + b*x]]]) + (4*(ArcTanh[a] - ArcTanh[a + b*x])^2 - (Pi - (2*I)*ArcTanh[a + b*x])^2 - 8
*(ArcTanh[a] - ArcTanh[a + b*x])*Log[1 - E^(2*ArcTanh[a] - 2*ArcTanh[a + b*x])] - (4*I)*(Pi - (2*I)*ArcTanh[a
+ b*x])*Log[1 + E^(2*ArcTanh[a + b*x])] + 4*(I*Pi + 2*ArcTanh[a + b*x])*Log[2/Sqrt[1 - (a + b*x)^2]] + 8*(ArcT
anh[a] - ArcTanh[a + b*x])*Log[(-2*I)*Sinh[ArcTanh[a] - ArcTanh[a + b*x]]] - 4*PolyLog[2, E^(2*ArcTanh[a] - 2*
ArcTanh[a + b*x])] - 4*PolyLog[2, -E^(2*ArcTanh[a + b*x])])/8

Maple [A] (verified)

Time = 0.34 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.74

method result size
risch \(\frac {\operatorname {dilog}\left (\frac {x b}{-1-a}\right )}{2}+\frac {\ln \left (b x +a +1\right ) \ln \left (\frac {x b}{-1-a}\right )}{2}-\frac {\operatorname {dilog}\left (\frac {b x}{1-a}\right )}{2}-\frac {\ln \left (b x +a -1\right ) \ln \left (\frac {b x}{1-a}\right )}{2}\) \(68\)
parts \(\ln \left (x \right ) \operatorname {arccoth}\left (b x +a \right )+b \left (\frac {\operatorname {dilog}\left (\frac {b x +a -1}{-1+a}\right )}{2 b}+\frac {\ln \left (x \right ) \ln \left (\frac {b x +a -1}{-1+a}\right )}{2 b}-\frac {\operatorname {dilog}\left (\frac {b x +a +1}{1+a}\right )}{2 b}-\frac {\ln \left (x \right ) \ln \left (\frac {b x +a +1}{1+a}\right )}{2 b}\right )\) \(90\)
derivativedivides \(\ln \left (-b x \right ) \operatorname {arccoth}\left (b x +a \right )-\frac {\operatorname {dilog}\left (\frac {-b x -a -1}{-1-a}\right )}{2}-\frac {\ln \left (-b x \right ) \ln \left (\frac {-b x -a -1}{-1-a}\right )}{2}+\frac {\operatorname {dilog}\left (\frac {-b x -a +1}{1-a}\right )}{2}+\frac {\ln \left (-b x \right ) \ln \left (\frac {-b x -a +1}{1-a}\right )}{2}\) \(104\)
default \(\ln \left (-b x \right ) \operatorname {arccoth}\left (b x +a \right )-\frac {\operatorname {dilog}\left (\frac {-b x -a -1}{-1-a}\right )}{2}-\frac {\ln \left (-b x \right ) \ln \left (\frac {-b x -a -1}{-1-a}\right )}{2}+\frac {\operatorname {dilog}\left (\frac {-b x -a +1}{1-a}\right )}{2}+\frac {\ln \left (-b x \right ) \ln \left (\frac {-b x -a +1}{1-a}\right )}{2}\) \(104\)

[In]

int(arccoth(b*x+a)/x,x,method=_RETURNVERBOSE)

[Out]

1/2*dilog(x*b/(-1-a))+1/2*ln(b*x+a+1)*ln(x*b/(-1-a))-1/2*dilog(b*x/(1-a))-1/2*ln(b*x+a-1)*ln(b*x/(1-a))

Fricas [F]

\[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\int { \frac {\operatorname {arcoth}\left (b x + a\right )}{x} \,d x } \]

[In]

integrate(arccoth(b*x+a)/x,x, algorithm="fricas")

[Out]

integral(arccoth(b*x + a)/x, x)

Sympy [F]

\[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\int \frac {\operatorname {acoth}{\left (a + b x \right )}}{x}\, dx \]

[In]

integrate(acoth(b*x+a)/x,x)

[Out]

Integral(acoth(a + b*x)/x, x)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.39 \[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=-\frac {1}{2} \, b {\left (\frac {\log \left (b x + a + 1\right )}{b} - \frac {\log \left (b x + a - 1\right )}{b}\right )} \log \left (x\right ) + \frac {1}{2} \, b {\left (\frac {\log \left (b x + a + 1\right ) \log \left (-\frac {b x + a + 1}{a + 1} + 1\right ) + {\rm Li}_2\left (\frac {b x + a + 1}{a + 1}\right )}{b} - \frac {\log \left (b x + a - 1\right ) \log \left (-\frac {b x + a - 1}{a - 1} + 1\right ) + {\rm Li}_2\left (\frac {b x + a - 1}{a - 1}\right )}{b}\right )} + \operatorname {arcoth}\left (b x + a\right ) \log \left (x\right ) \]

[In]

integrate(arccoth(b*x+a)/x,x, algorithm="maxima")

[Out]

-1/2*b*(log(b*x + a + 1)/b - log(b*x + a - 1)/b)*log(x) + 1/2*b*((log(b*x + a + 1)*log(-(b*x + a + 1)/(a + 1)
+ 1) + dilog((b*x + a + 1)/(a + 1)))/b - (log(b*x + a - 1)*log(-(b*x + a - 1)/(a - 1) + 1) + dilog((b*x + a -
1)/(a - 1)))/b) + arccoth(b*x + a)*log(x)

Giac [F]

\[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\int { \frac {\operatorname {arcoth}\left (b x + a\right )}{x} \,d x } \]

[In]

integrate(arccoth(b*x+a)/x,x, algorithm="giac")

[Out]

integrate(arccoth(b*x + a)/x, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\coth ^{-1}(a+b x)}{x} \, dx=\int \frac {\mathrm {acoth}\left (a+b\,x\right )}{x} \,d x \]

[In]

int(acoth(a + b*x)/x,x)

[Out]

int(acoth(a + b*x)/x, x)