\(\int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx\) [82]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 320 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=-\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+\sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-\sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+2 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}} \]

[Out]

-8*(1+1/a/x)^(1/4)/(1-1/a/x)^(1/4)+2*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))+2*arctanh((1+1/a/x)^(1/4)/(1-1/a/
x)^(1/4))-1/2*ln(1-(1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(1/4)+(1-1/a/x)^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)+1/2*ln(1+(
1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(1/4)+(1-1/a/x)^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)-arctan(-1+(1-1/a/x)^(1/4)*2^(1
/2)/(1+1/a/x)^(1/4))*2^(1/2)-arctan(1+(1-1/a/x)^(1/4)*2^(1/2)/(1+1/a/x)^(1/4))*2^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.143, Rules used = {6306, 100, 21, 132, 65, 338, 303, 1176, 631, 210, 1179, 642, 95, 218, 212, 209} \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=\sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}\right )-\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )+2 \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {8 \sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}-\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}}+\frac {\log \left (\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {\frac {1}{a x}+1}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{\frac {1}{a x}+1}}+1\right )}{\sqrt {2}} \]

[In]

Int[E^((5*ArcCoth[a*x])/2)/x,x]

[Out]

(-8*(1 + 1/(a*x))^(1/4))/(1 - 1/(a*x))^(1/4) + Sqrt[2]*ArcTan[1 - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^
(1/4)] - Sqrt[2]*ArcTan[1 + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)] + 2*ArcTan[(1 + 1/(a*x))^(1/4)/
(1 - 1/(a*x))^(1/4)] + 2*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)] - Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 +
 1/(a*x)] - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)]/Sqrt[2] + Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/
(a*x)] + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)]/Sqrt[2]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 132

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[b*d^(m
+ n)*f^p, Int[(a + b*x)^(m - 1)/(c + d*x)^m, x], x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandTo
Sum[(a + b*x)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && EqQ[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 0] || SumSimplerQ[m, -1] ||  !(GtQ[n, 0] || SumSimplerQ[n,
 -1]))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 338

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 6306

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{5/4}}{x \left (1-\frac {x}{a}\right )^{5/4}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+(4 a) \text {Subst}\left (\int \frac {-\frac {1}{4 a}+\frac {x}{4 a^2}}{x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-\text {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^{3/4}}{x \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+\frac {\text {Subst}\left (\int \frac {1}{\sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right )}{a}-\text {Subst}\left (\int \frac {1}{x \sqrt [4]{1-\frac {x}{a}} \left (1+\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}-4 \text {Subst}\left (\int \frac {x^2}{\left (2-x^4\right )^{3/4}} \, dx,x,\sqrt [4]{1-\frac {1}{a x}}\right )-4 \text {Subst}\left (\int \frac {1}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+2 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-4 \text {Subst}\left (\int \frac {x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+2 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-2 \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+2 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}-\frac {\text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}-\text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-\text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\frac {\sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+2 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}-\sqrt {2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+\sqrt {2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right ) \\ & = -\frac {8 \sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}+\sqrt {2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )-\sqrt {2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )+2 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )+2 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )-\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}-\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}}+\frac {\log \left (1+\frac {\sqrt {1-\frac {1}{a x}}}{\sqrt {1+\frac {1}{a x}}}+\frac {\sqrt {2} \sqrt [4]{1-\frac {1}{a x}}}{\sqrt [4]{1+\frac {1}{a x}}}\right )}{\sqrt {2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.05 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.09 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=8 e^{\frac {1}{2} \coth ^{-1}(a x)} \left (-1+\operatorname {Hypergeometric2F1}\left (\frac {1}{8},1,\frac {9}{8},e^{4 \coth ^{-1}(a x)}\right )\right ) \]

[In]

Integrate[E^((5*ArcCoth[a*x])/2)/x,x]

[Out]

8*E^(ArcCoth[a*x]/2)*(-1 + Hypergeometric2F1[1/8, 1, 9/8, E^(4*ArcCoth[a*x])])

Maple [F]

\[\int \frac {1}{\left (\frac {a x -1}{a x +1}\right )^{\frac {5}{4}} x}d x\]

[In]

int(1/((a*x-1)/(a*x+1))^(5/4)/x,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(5/4)/x,x)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.75 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=\frac {\sqrt {2} {\left (-\left (i - 1\right ) \, a x + i - 1\right )} \log \left (\left (i + 1\right ) \, \sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + \sqrt {2} {\left (\left (i + 1\right ) \, a x - i - 1\right )} \log \left (-\left (i - 1\right ) \, \sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, a x + i + 1\right )} \log \left (\left (i - 1\right ) \, \sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + \sqrt {2} {\left (\left (i - 1\right ) \, a x - i + 1\right )} \log \left (-\left (i + 1\right ) \, \sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) - 4 \, {\left (a x - 1\right )} \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 2 \, {\left (a x - 1\right )} \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 2 \, {\left (a x - 1\right )} \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right ) - 16 \, {\left (a x + 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}{2 \, {\left (a x - 1\right )}} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(5/4)/x,x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*(-(I - 1)*a*x + I - 1)*log((I + 1)*sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4)) + sqrt(2)*((I + 1)*a*
x - I - 1)*log(-(I - 1)*sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4)) + sqrt(2)*(-(I + 1)*a*x + I + 1)*log((I - 1)*
sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4)) + sqrt(2)*((I - 1)*a*x - I + 1)*log(-(I + 1)*sqrt(2) + 2*((a*x - 1)/(
a*x + 1))^(1/4)) - 4*(a*x - 1)*arctan(((a*x - 1)/(a*x + 1))^(1/4)) + 2*(a*x - 1)*log(((a*x - 1)/(a*x + 1))^(1/
4) + 1) - 2*(a*x - 1)*log(((a*x - 1)/(a*x + 1))^(1/4) - 1) - 16*(a*x + 1)*((a*x - 1)/(a*x + 1))^(3/4))/(a*x -
1)

Sympy [F]

\[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=\int \frac {1}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{4}}}\, dx \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(5/4)/x,x)

[Out]

Integral(1/(x*((a*x - 1)/(a*x + 1))**(5/4)), x)

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.76 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=-\frac {1}{2} \, a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) + 2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right ) - \sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + \sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a} + \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a} + \frac {16}{a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(5/4)/x,x, algorithm="maxima")

[Out]

-1/2*a*((2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4))) + 2*sqrt(2)*arctan(-1/2*sqrt(
2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4))) - sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x -
1)/(a*x + 1)) + 1) + sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1))/a + 4*
arctan(((a*x - 1)/(a*x + 1))^(1/4))/a - 2*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a + 2*log(((a*x - 1)/(a*x + 1))
^(1/4) - 1)/a + 16/(a*((a*x - 1)/(a*x + 1))^(1/4)))

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 252, normalized size of antiderivative = 0.79 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=-\frac {1}{2} \, a {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right )}{a} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}\right )}{a} - \frac {\sqrt {2} \log \left (\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} + \frac {\sqrt {2} \log \left (-\sqrt {2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + \sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a} + \frac {4 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a} - \frac {2 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a} + \frac {2 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a} + \frac {16}{a \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(5/4)/x,x, algorithm="giac")

[Out]

-1/2*a*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4)))/a + 2*sqrt(2)*arctan(-1/2*sqrt
(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4)))/a - sqrt(2)*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x
 - 1)/(a*x + 1)) + 1)/a + sqrt(2)*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/(a*x + 1)) + 1)/a
+ 4*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a - 2*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a + 2*log(abs(((a*x - 1)/(a
*x + 1))^(1/4) - 1))/a + 16/(a*((a*x - 1)/(a*x + 1))^(1/4)))

Mupad [B] (verification not implemented)

Time = 4.46 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.37 \[ \int \frac {e^{\frac {5}{2} \coth ^{-1}(a x)}}{x} \, dx=-2\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )-\frac {8}{{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}-\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,1{}\mathrm {i}\right )\,2{}\mathrm {i}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-1+1{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (-1-\mathrm {i}\right ) \]

[In]

int(1/(x*((a*x - 1)/(a*x + 1))^(5/4)),x)

[Out]

- atan(((a*x - 1)/(a*x + 1))^(1/4)*1i)*2i - 2*atan(((a*x - 1)/(a*x + 1))^(1/4)) - 2^(1/2)*atan(2^(1/2)*((a*x -
 1)/(a*x + 1))^(1/4)*(1/2 - 1i/2))*(1 - 1i) - 2^(1/2)*atan(2^(1/2)*((a*x - 1)/(a*x + 1))^(1/4)*(1/2 + 1i/2))*(
1 + 1i) - 8/((a*x - 1)/(a*x + 1))^(1/4)