\(\int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx\) [169]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 37 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {c^4 (1-a x)^4}{2 a}-\frac {c^4 (1-a x)^5}{5 a} \]

[Out]

1/2*c^4*(-a*x+1)^4/a-1/5*c^4*(-a*x+1)^5/a

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6302, 6264, 45} \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {c^4 (1-a x)^4}{2 a}-\frac {c^4 (1-a x)^5}{5 a} \]

[In]

Int[E^(2*ArcCoth[a*x])*(c - a*c*x)^4,x]

[Out]

(c^4*(1 - a*x)^4)/(2*a) - (c^4*(1 - a*x)^5)/(5*a)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 6264

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[u*(1 + d*(x/c))^
p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int e^{2 \text {arctanh}(a x)} (c-a c x)^4 \, dx \\ & = -\left (c^4 \int (1-a x)^3 (1+a x) \, dx\right ) \\ & = -\left (c^4 \int \left (2 (1-a x)^3-(1-a x)^4\right ) \, dx\right ) \\ & = \frac {c^4 (1-a x)^4}{2 a}-\frac {c^4 (1-a x)^5}{5 a} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.81 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {1}{10} c^4 x \left (-10+10 a x-5 a^3 x^3+2 a^4 x^4\right ) \]

[In]

Integrate[E^(2*ArcCoth[a*x])*(c - a*c*x)^4,x]

[Out]

(c^4*x*(-10 + 10*a*x - 5*a^3*x^3 + 2*a^4*x^4))/10

Maple [A] (verified)

Time = 0.49 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.78

method result size
gosper \(\frac {x \left (2 a^{4} x^{4}-5 a^{3} x^{3}+10 a x -10\right ) c^{4}}{10}\) \(29\)
default \(c^{4} \left (\frac {1}{5} a^{4} x^{5}-\frac {1}{2} a^{3} x^{4}+a \,x^{2}-x \right )\) \(30\)
norman \(a \,c^{4} x^{2}-c^{4} x -\frac {1}{2} a^{3} c^{4} x^{4}+\frac {1}{5} a^{4} c^{4} x^{5}\) \(38\)
risch \(a \,c^{4} x^{2}-c^{4} x -\frac {1}{2} a^{3} c^{4} x^{4}+\frac {1}{5} a^{4} c^{4} x^{5}\) \(38\)
parallelrisch \(a \,c^{4} x^{2}-c^{4} x -\frac {1}{2} a^{3} c^{4} x^{4}+\frac {1}{5} a^{4} c^{4} x^{5}\) \(38\)
meijerg \(-\frac {c^{4} \left (-\frac {a x \left (12 a^{4} x^{4}+15 a^{3} x^{3}+20 a^{2} x^{2}+30 a x +60\right )}{60}-\ln \left (-a x +1\right )\right )}{a}-\frac {3 c^{4} \left (\frac {a x \left (15 a^{3} x^{3}+20 a^{2} x^{2}+30 a x +60\right )}{60}+\ln \left (-a x +1\right )\right )}{a}-\frac {2 c^{4} \left (-\frac {a x \left (4 a^{2} x^{2}+6 a x +12\right )}{12}-\ln \left (-a x +1\right )\right )}{a}+\frac {2 c^{4} \left (\frac {a x \left (3 a x +6\right )}{6}+\ln \left (-a x +1\right )\right )}{a}+\frac {3 c^{4} \left (-a x -\ln \left (-a x +1\right )\right )}{a}+\frac {c^{4} \ln \left (-a x +1\right )}{a}\) \(194\)

[In]

int(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/10*x*(2*a^4*x^4-5*a^3*x^3+10*a*x-10)*c^4

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {1}{5} \, a^{4} c^{4} x^{5} - \frac {1}{2} \, a^{3} c^{4} x^{4} + a c^{4} x^{2} - c^{4} x \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^4,x, algorithm="fricas")

[Out]

1/5*a^4*c^4*x^5 - 1/2*a^3*c^4*x^4 + a*c^4*x^2 - c^4*x

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.97 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {a^{4} c^{4} x^{5}}{5} - \frac {a^{3} c^{4} x^{4}}{2} + a c^{4} x^{2} - c^{4} x \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)**4,x)

[Out]

a**4*c**4*x**5/5 - a**3*c**4*x**4/2 + a*c**4*x**2 - c**4*x

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {1}{5} \, a^{4} c^{4} x^{5} - \frac {1}{2} \, a^{3} c^{4} x^{4} + a c^{4} x^{2} - c^{4} x \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^4,x, algorithm="maxima")

[Out]

1/5*a^4*c^4*x^5 - 1/2*a^3*c^4*x^4 + a*c^4*x^2 - c^4*x

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {1}{5} \, a^{4} c^{4} x^{5} - \frac {1}{2} \, a^{3} c^{4} x^{4} + a c^{4} x^{2} - c^{4} x \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^4,x, algorithm="giac")

[Out]

1/5*a^4*c^4*x^5 - 1/2*a^3*c^4*x^4 + a*c^4*x^2 - c^4*x

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 37, normalized size of antiderivative = 1.00 \[ \int e^{2 \coth ^{-1}(a x)} (c-a c x)^4 \, dx=\frac {a^4\,c^4\,x^5}{5}-\frac {a^3\,c^4\,x^4}{2}+a\,c^4\,x^2-c^4\,x \]

[In]

int(((c - a*c*x)^4*(a*x + 1))/(a*x - 1),x)

[Out]

a*c^4*x^2 - c^4*x - (a^3*c^4*x^4)/2 + (a^4*c^4*x^5)/5