\(\int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx\) [220]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 18, antiderivative size = 53 \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c} \]

[Out]

-arctanh((1-1/a^2/x^2)^(1/2))/a/c+2*(a-1/x)/a^2/c/(1-1/a^2/x^2)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6310, 6313, 1819, 272, 65, 214} \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c} \]

[In]

Int[1/(E^(3*ArcCoth[a*x])*(c - a*c*x)),x]

[Out]

(2*(a - x^(-1)))/(a^2*c*Sqrt[1 - 1/(a^2*x^2)]) - ArcTanh[Sqrt[1 - 1/(a^2*x^2)]]/(a*c)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1819

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 6310

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6313

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[-c^n, Subst[Int[(c +
 d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \frac {e^{-3 \coth ^{-1}(a x)}}{\left (1-\frac {1}{a x}\right ) x} \, dx}{a c} \\ & = \frac {\text {Subst}\left (\int \frac {\left (1-\frac {x}{a}\right )^2}{x \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{a c} \\ & = \frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c} \\ & = \frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a c} \\ & = \frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {a \text {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c} \\ & = \frac {2 \left (a-\frac {1}{x}\right )}{a^2 c \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 54, normalized size of antiderivative = 1.02 \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\frac {\frac {2 \sqrt {1-\frac {1}{a^2 x^2}} x}{1+a x}-\frac {\log \left (a \left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )}{a}}{c} \]

[In]

Integrate[1/(E^(3*ArcCoth[a*x])*(c - a*c*x)),x]

[Out]

((2*Sqrt[1 - 1/(a^2*x^2)]*x)/(1 + a*x) - Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x]/a)/c

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(247\) vs. \(2(49)=98\).

Time = 0.41 (sec) , antiderivative size = 248, normalized size of antiderivative = 4.68

method result size
default \(-\frac {\left (\ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}-\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{2} x^{2}+2 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{2} x +\left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}-2 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a x +a \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right )-\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\right ) \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}{a \sqrt {a^{2}}\, c \left (a x -1\right ) \sqrt {\left (a x -1\right ) \left (a x +1\right )}}\) \(248\)

[In]

int(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c),x,method=_RETURNVERBOSE)

[Out]

-(ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*a^3*x^2-(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*a^2*
x^2+2*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*a^2*x+((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)-2*
(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*a*x+a*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))-(a^2)^(1
/2)*((a*x-1)*(a*x+1))^(1/2))/a*((a*x-1)/(a*x+1))^(3/2)/(a^2)^(1/2)/c/(a*x-1)/((a*x-1)*(a*x+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 63, normalized size of antiderivative = 1.19 \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\frac {2 \, \sqrt {\frac {a x - 1}{a x + 1}} - \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) + \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a c} \]

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c),x, algorithm="fricas")

[Out]

(2*sqrt((a*x - 1)/(a*x + 1)) - log(sqrt((a*x - 1)/(a*x + 1)) + 1) + log(sqrt((a*x - 1)/(a*x + 1)) - 1))/(a*c)

Sympy [F]

\[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=- \frac {\int \left (- \frac {\sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a^{2} x^{2} - 1}\right )\, dx + \int \frac {a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}{a^{2} x^{2} - 1}\, dx}{c} \]

[In]

integrate(((a*x-1)/(a*x+1))**(3/2)/(-a*c*x+c),x)

[Out]

-(Integral(-sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a**2*x**2 - 1), x) + Integral(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x +
 1))/(a**2*x**2 - 1), x))/c

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.47 \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=-a {\left (\frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c} - \frac {2 \, \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c}\right )} \]

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c),x, algorithm="maxima")

[Out]

-a*(log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c) - log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c) - 2*sqrt((a*x - 1)
/(a*x + 1))/(a^2*c))

Giac [F]

\[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\int { -\frac {\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}{a c x - c} \,d x } \]

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c),x, algorithm="giac")

[Out]

undef

Mupad [B] (verification not implemented)

Time = 4.20 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.91 \[ \int \frac {e^{-3 \coth ^{-1}(a x)}}{c-a c x} \, dx=\frac {2\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{a\,c}-\frac {2\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c} \]

[In]

int(((a*x - 1)/(a*x + 1))^(3/2)/(c - a*c*x),x)

[Out]

(2*((a*x - 1)/(a*x + 1))^(1/2))/(a*c) - (2*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c)