\(\int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx\) [247]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 163 \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\frac {4 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{a \sqrt {1-\frac {1}{a x}}}+\frac {2 \left (1+\frac {1}{a x}\right )^{3/2} x \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{a^{3/2} \sqrt {1-\frac {1}{a x}}} \]

[Out]

2/3*(1+1/a/x)^(3/2)*x*(-a*c*x+c)^(1/2)/(1-1/a/x)^(1/2)+4*(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/a/(1-1/a/x)^(1/2)-4*
arctanh(2^(1/2)*(1/x)^(1/2)/a^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)*(1/x)^(1/2)*(-a*c*x+c)^(1/2)/a^(3/2)/(1-1/a/x)^(1
/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6311, 6316, 96, 95, 212} \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right ) \sqrt {c-a c x}}{a^{3/2} \sqrt {1-\frac {1}{a x}}}+\frac {2 x \left (\frac {1}{a x}+1\right )^{3/2} \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}+\frac {4 \sqrt {\frac {1}{a x}+1} \sqrt {c-a c x}}{a \sqrt {1-\frac {1}{a x}}} \]

[In]

Int[E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x],x]

[Out]

(4*Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/(a*Sqrt[1 - 1/(a*x)]) + (2*(1 + 1/(a*x))^(3/2)*x*Sqrt[c - a*c*x])/(3*Sqr
t[1 - 1/(a*x)]) - (4*Sqrt[2]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(
a*x)])])/(a^(3/2)*Sqrt[1 - 1/(a*x)])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 6311

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6316

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Dist[(-c^p)*x^m*(1/x)^m, S
ubst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, m,
n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {c-a c x} \int e^{3 \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a x}} \sqrt {x} \, dx}{\sqrt {1-\frac {1}{a x}} \sqrt {x}} \\ & = -\frac {\left (\sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/2}}{x^{5/2} \left (1-\frac {x}{a}\right )} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {2 \left (1+\frac {1}{a x}\right )^{3/2} x \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}-\frac {\left (2 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {x}{a}}}{x^{3/2} \left (1-\frac {x}{a}\right )} \, dx,x,\frac {1}{x}\right )}{a \sqrt {1-\frac {1}{a x}}} \\ & = \frac {4 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{a \sqrt {1-\frac {1}{a x}}}+\frac {2 \left (1+\frac {1}{a x}\right )^{3/2} x \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}-\frac {\left (4 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a^2 \sqrt {1-\frac {1}{a x}}} \\ & = \frac {4 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{a \sqrt {1-\frac {1}{a x}}}+\frac {2 \left (1+\frac {1}{a x}\right )^{3/2} x \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}-\frac {\left (8 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {2 x^2}{a}} \, dx,x,\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{a^2 \sqrt {1-\frac {1}{a x}}} \\ & = \frac {4 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{a \sqrt {1-\frac {1}{a x}}}+\frac {2 \left (1+\frac {1}{a x}\right )^{3/2} x \sqrt {c-a c x}}{3 \sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{a^{3/2} \sqrt {1-\frac {1}{a x}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.64 \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\frac {2 \sqrt {c-a c x} \left (\sqrt {a} \sqrt {1+\frac {1}{a x}} (7+a x)-6 \sqrt {2} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{3 a^{3/2} \sqrt {1-\frac {1}{a x}}} \]

[In]

Integrate[E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x],x]

[Out]

(2*Sqrt[c - a*c*x]*(Sqrt[a]*Sqrt[1 + 1/(a*x)]*(7 + a*x) - 6*Sqrt[2]*Sqrt[x^(-1)]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)]
)/(Sqrt[a]*Sqrt[1 + 1/(a*x)])]))/(3*a^(3/2)*Sqrt[1 - 1/(a*x)])

Maple [A] (verified)

Time = 0.45 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.66

method result size
default \(-\frac {2 \left (a x -1\right ) \sqrt {-c \left (a x -1\right )}\, \left (6 \sqrt {c}\, \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-a x \sqrt {-c \left (a x +1\right )}-7 \sqrt {-c \left (a x +1\right )}\right )}{3 \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {-c \left (a x +1\right )}\, a}\) \(107\)
risch \(-\frac {2 \left (a x +7\right ) c \left (a x -1\right )}{3 a \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x -1\right )}}-\frac {4 \sqrt {2}\, \sqrt {c}\, \arctan \left (\frac {\sqrt {-a c x -c}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {-c \left (a x +1\right )}\, \left (a x -1\right )}{a \left (a x +1\right ) \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x -1\right )}}\) \(121\)

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(-c*(a*x-1))^(1/2)*(6*c^(1/2)*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/
2)*2^(1/2)/c^(1/2))-a*x*(-c*(a*x+1))^(1/2)-7*(-c*(a*x+1))^(1/2))/(-c*(a*x+1))^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.53 \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\left [\frac {2 \, {\left (3 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x + 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + {\left (a^{2} x^{2} + 8 \, a x + 7\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{3 \, {\left (a^{2} x - a\right )}}, -\frac {2 \, {\left (6 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - {\left (a^{2} x^{2} + 8 \, a x + 7\right )} \sqrt {-a c x + c} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{3 \, {\left (a^{2} x - a\right )}}\right ] \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2),x, algorithm="fricas")

[Out]

[2/3*(3*sqrt(2)*(a*x - 1)*sqrt(-c)*log(-(a^2*c*x^2 + 2*a*c*x + 2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*s
qrt((a*x - 1)/(a*x + 1)) - 3*c)/(a^2*x^2 - 2*a*x + 1)) + (a^2*x^2 + 8*a*x + 7)*sqrt(-a*c*x + c)*sqrt((a*x - 1)
/(a*x + 1)))/(a^2*x - a), -2/3*(6*sqrt(2)*(a*x - 1)*sqrt(c)*arctan(sqrt(2)*sqrt(-a*c*x + c)*sqrt(c)*sqrt((a*x
- 1)/(a*x + 1))/(a*c*x - c)) - (a^2*x^2 + 8*a*x + 7)*sqrt(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1)))/(a^2*x - a)]

Sympy [F]

\[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )}}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a*c*x+c)**(1/2),x)

[Out]

Integral(sqrt(-c*(a*x - 1))/((a*x - 1)/(a*x + 1))**(3/2), x)

Maxima [F]

\[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\int { \frac {\sqrt {-a c x + c}}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a*c*x + c)/((a*x - 1)/(a*x + 1))^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x} \, dx=\int \frac {\sqrt {c-a\,c\,x}}{{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

[In]

int((c - a*c*x)^(1/2)/((a*x - 1)/(a*x + 1))^(3/2),x)

[Out]

int((c - a*c*x)^(1/2)/((a*x - 1)/(a*x + 1))^(3/2), x)