\(\int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\) [306]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 42 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a c x}}{x}+3 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \]

[Out]

3*a*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)+(-a*c*x+c)^(1/2)/x

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {6302, 6265, 21, 79, 65, 214} \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=3 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+\frac {\sqrt {c-a c x}}{x} \]

[In]

Int[(E^(2*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

Sqrt[c - a*c*x]/x + 3*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6265

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[u*(c + d*x)^p*((1 + a*x)^(
n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{2 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^2} \, dx \\ & = -\int \frac {(1+a x) \sqrt {c-a c x}}{x^2 (1-a x)} \, dx \\ & = -\left (c \int \frac {1+a x}{x^2 \sqrt {c-a c x}} \, dx\right ) \\ & = \frac {\sqrt {c-a c x}}{x}-\frac {1}{2} (3 a c) \int \frac {1}{x \sqrt {c-a c x}} \, dx \\ & = \frac {\sqrt {c-a c x}}{x}+3 \text {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a c}} \, dx,x,\sqrt {c-a c x}\right ) \\ & = \frac {\sqrt {c-a c x}}{x}+3 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.00 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a c x}}{x}+3 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right ) \]

[In]

Integrate[(E^(2*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

Sqrt[c - a*c*x]/x + 3*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]]

Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 43, normalized size of antiderivative = 1.02

method result size
risch \(-\frac {\left (a x -1\right ) c}{x \sqrt {-c \left (a x -1\right )}}+3 a \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right ) \sqrt {c}\) \(43\)
pseudoelliptic \(\frac {3 \,\operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}}{\sqrt {c}}\right ) a c x +\sqrt {-c \left (a x -1\right )}\, \sqrt {c}}{x \sqrt {c}}\) \(43\)
derivativedivides \(-2 c a \left (-\frac {\sqrt {-a c x +c}}{2 a c x}-\frac {3 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{2 \sqrt {c}}\right )\) \(45\)
default \(2 c a \left (\frac {\sqrt {-a c x +c}}{2 a c x}+\frac {3 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{2 \sqrt {c}}\right )\) \(45\)

[In]

int(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-(a*x-1)/x/(-c*(a*x-1))^(1/2)*c+3*a*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 97, normalized size of antiderivative = 2.31 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\left [\frac {3 \, a \sqrt {c} x \log \left (\frac {a c x - 2 \, \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{x}\right ) + 2 \, \sqrt {-a c x + c}}{2 \, x}, -\frac {3 \, a \sqrt {-c} x \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {-c}}{c}\right ) - \sqrt {-a c x + c}}{x}\right ] \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*a*sqrt(c)*x*log((a*c*x - 2*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/x) + 2*sqrt(-a*c*x + c))/x, -(3*a*sqrt(-c)*
x*arctan(sqrt(-a*c*x + c)*sqrt(-c)/c) - sqrt(-a*c*x + c))/x]

Sympy [F]

\[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )} \left (a x + 1\right )}{x^{2} \left (a x - 1\right )}\, dx \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)**(1/2)/x**2,x)

[Out]

Integral(sqrt(-c*(a*x - 1))*(a*x + 1)/(x**2*(a*x - 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 62, normalized size of antiderivative = 1.48 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=-\frac {1}{2} \, a c {\left (\frac {3 \, \log \left (\frac {\sqrt {-a c x + c} - \sqrt {c}}{\sqrt {-a c x + c} + \sqrt {c}}\right )}{\sqrt {c}} - \frac {2 \, \sqrt {-a c x + c}}{a c x}\right )} \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

-1/2*a*c*(3*log((sqrt(-a*c*x + c) - sqrt(c))/(sqrt(-a*c*x + c) + sqrt(c)))/sqrt(c) - 2*sqrt(-a*c*x + c)/(a*c*x
))

Giac [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.14 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=-\frac {\frac {3 \, a^{2} c \arctan \left (\frac {\sqrt {-a c x + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {\sqrt {-a c x + c} a}{x}}{a} \]

[In]

integrate(1/(a*x-1)*(a*x+1)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

-(3*a^2*c*arctan(sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) - sqrt(-a*c*x + c)*a/x)/a

Mupad [B] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.81 \[ \int \frac {e^{2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a\,c\,x}}{x}+3\,a\,\sqrt {c}\,\mathrm {atanh}\left (\frac {\sqrt {c-a\,c\,x}}{\sqrt {c}}\right ) \]

[In]

int(((c - a*c*x)^(1/2)*(a*x + 1))/(x^2*(a*x - 1)),x)

[Out]

(c - a*c*x)^(1/2)/x + 3*a*c^(1/2)*atanh((c - a*c*x)^(1/2)/c^(1/2))