\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\) [346]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 78 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a c x}}{x}-5 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right ) \]

[Out]

-5*a*arctanh((-a*c*x+c)^(1/2)/c^(1/2))*c^(1/2)+4*a*arctanh(1/2*(-a*c*x+c)^(1/2)*2^(1/2)/c^(1/2))*2^(1/2)*c^(1/
2)+(-a*c*x+c)^(1/2)/x

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {6302, 6265, 21, 100, 162, 65, 214, 212} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=-5 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right )+\frac {\sqrt {c-a c x}}{x} \]

[In]

Int[Sqrt[c - a*c*x]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

Sqrt[c - a*c*x]/x - 5*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]] + 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]
/(Sqrt[2]*Sqrt[c])]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6265

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[u*(c + d*x)^p*((1 + a*x)^(
n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-a c x}}{x^2} \, dx \\ & = -\int \frac {(1-a x) \sqrt {c-a c x}}{x^2 (1+a x)} \, dx \\ & = -\frac {\int \frac {(c-a c x)^{3/2}}{x^2 (1+a x)} \, dx}{c} \\ & = \frac {\sqrt {c-a c x}}{x}+\frac {\int \frac {\frac {5 a c^2}{2}-\frac {3}{2} a^2 c^2 x}{x (1+a x) \sqrt {c-a c x}} \, dx}{c} \\ & = \frac {\sqrt {c-a c x}}{x}+\frac {1}{2} (5 a c) \int \frac {1}{x \sqrt {c-a c x}} \, dx-\left (4 a^2 c\right ) \int \frac {1}{(1+a x) \sqrt {c-a c x}} \, dx \\ & = \frac {\sqrt {c-a c x}}{x}-5 \text {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a c}} \, dx,x,\sqrt {c-a c x}\right )+(8 a) \text {Subst}\left (\int \frac {1}{2-\frac {x^2}{c}} \, dx,x,\sqrt {c-a c x}\right ) \\ & = \frac {\sqrt {c-a c x}}{x}-5 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a c x}}{x}-5 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {c}}\right )+4 \sqrt {2} a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a c x}}{\sqrt {2} \sqrt {c}}\right ) \]

[In]

Integrate[Sqrt[c - a*c*x]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

Sqrt[c - a*c*x]/x - 5*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/Sqrt[c]] + 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]
/(Sqrt[2]*Sqrt[c])]

Maple [A] (verified)

Time = 0.55 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.90

method result size
pseudoelliptic \(\frac {4 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a c x -5 \,\operatorname {arctanh}\left (\frac {\sqrt {-c \left (a x -1\right )}}{\sqrt {c}}\right ) a c x +\sqrt {-c \left (a x -1\right )}\, \sqrt {c}}{x \sqrt {c}}\) \(70\)
derivativedivides \(-2 c a \left (-\frac {2 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}-\frac {\sqrt {-a c x +c}}{2 a c x}+\frac {5 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{2 \sqrt {c}}\right )\) \(71\)
default \(2 c a \left (\frac {2 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}+\frac {\sqrt {-a c x +c}}{2 a c x}-\frac {5 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{2 \sqrt {c}}\right )\) \(71\)
risch \(-\frac {\left (a x -1\right ) c}{x \sqrt {-c \left (a x -1\right )}}+\frac {a \left (-\frac {10 \,\operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}}{\sqrt {c}}\right )}{\sqrt {c}}+\frac {8 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a c x +c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}\right ) c}{2}\) \(73\)

[In]

int((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x,method=_RETURNVERBOSE)

[Out]

(4*2^(1/2)*arctanh(1/2*(-c*(a*x-1))^(1/2)*2^(1/2)/c^(1/2))*a*c*x-5*arctanh((-c*(a*x-1))^(1/2)/c^(1/2))*a*c*x+(
-c*(a*x-1))^(1/2)*c^(1/2))/x/c^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 176, normalized size of antiderivative = 2.26 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\left [\frac {4 \, \sqrt {2} a \sqrt {c} x \log \left (\frac {a c x - 2 \, \sqrt {2} \sqrt {-a c x + c} \sqrt {c} - 3 \, c}{a x + 1}\right ) + 5 \, a \sqrt {c} x \log \left (\frac {a c x + 2 \, \sqrt {-a c x + c} \sqrt {c} - 2 \, c}{x}\right ) + 2 \, \sqrt {-a c x + c}}{2 \, x}, -\frac {4 \, \sqrt {2} a \sqrt {-c} x \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {-c}}{2 \, c}\right ) - 5 \, a \sqrt {-c} x \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {-c}}{c}\right ) - \sqrt {-a c x + c}}{x}\right ] \]

[In]

integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="fricas")

[Out]

[1/2*(4*sqrt(2)*a*sqrt(c)*x*log((a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)*sqrt(c) - 3*c)/(a*x + 1)) + 5*a*sqrt(c)*x*
log((a*c*x + 2*sqrt(-a*c*x + c)*sqrt(c) - 2*c)/x) + 2*sqrt(-a*c*x + c))/x, -(4*sqrt(2)*a*sqrt(-c)*x*arctan(1/2
*sqrt(2)*sqrt(-a*c*x + c)*sqrt(-c)/c) - 5*a*sqrt(-c)*x*arctan(sqrt(-a*c*x + c)*sqrt(-c)/c) - sqrt(-a*c*x + c))
/x]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )} \left (a x - 1\right )}{x^{2} \left (a x + 1\right )}\, dx \]

[In]

integrate((-a*c*x+c)**(1/2)*(a*x-1)/(a*x+1)/x**2,x)

[Out]

Integral(sqrt(-c*(a*x - 1))*(a*x - 1)/(x**2*(a*x + 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.42 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=-\frac {1}{2} \, a c {\left (\frac {4 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {c} - \sqrt {-a c x + c}}{\sqrt {2} \sqrt {c} + \sqrt {-a c x + c}}\right )}{\sqrt {c}} - \frac {5 \, \log \left (\frac {\sqrt {-a c x + c} - \sqrt {c}}{\sqrt {-a c x + c} + \sqrt {c}}\right )}{\sqrt {c}} - \frac {2 \, \sqrt {-a c x + c}}{a c x}\right )} \]

[In]

integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="maxima")

[Out]

-1/2*a*c*(4*sqrt(2)*log(-(sqrt(2)*sqrt(c) - sqrt(-a*c*x + c))/(sqrt(2)*sqrt(c) + sqrt(-a*c*x + c)))/sqrt(c) -
5*log((sqrt(-a*c*x + c) - sqrt(c))/(sqrt(-a*c*x + c) + sqrt(c)))/sqrt(c) - 2*sqrt(-a*c*x + c)/(a*c*x))

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.91 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=-\frac {4 \, \sqrt {2} a c \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c}}{2 \, \sqrt {-c}}\right )}{\sqrt {-c}} + \frac {5 \, a c \arctan \left (\frac {\sqrt {-a c x + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} + \frac {\sqrt {-a c x + c}}{x} \]

[In]

integrate((-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="giac")

[Out]

-4*sqrt(2)*a*c*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)/sqrt(-c))/sqrt(-c) + 5*a*c*arctan(sqrt(-a*c*x + c)/sqrt(-c)
)/sqrt(-c) + sqrt(-a*c*x + c)/x

Mupad [B] (verification not implemented)

Time = 4.10 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.78 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {c-a\,c\,x}}{x}-5\,a\,\sqrt {c}\,\mathrm {atanh}\left (\frac {\sqrt {c-a\,c\,x}}{\sqrt {c}}\right )+4\,\sqrt {2}\,a\,\sqrt {c}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {c-a\,c\,x}}{2\,\sqrt {c}}\right ) \]

[In]

int(((c - a*c*x)^(1/2)*(a*x - 1))/(x^2*(a*x + 1)),x)

[Out]

(c - a*c*x)^(1/2)/x - 5*a*c^(1/2)*atanh((c - a*c*x)^(1/2)/c^(1/2)) + 4*2^(1/2)*a*c^(1/2)*atanh((2^(1/2)*(c - a
*c*x)^(1/2))/(2*c^(1/2)))