\(\int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx\) [359]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 278 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=-\frac {\left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} (c-a c x)^{\frac {4+n}{2}}}{a (4+n) (6+n)}+\frac {2 \left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} (c-a c x)^{\frac {4+n}{2}}}{a^2 (6+n) \left (8+6 n+n^2\right ) x}+\frac {(8+n) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{6+n}-\frac {\left (a-\frac {1}{x}\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{a} \]

[Out]

-(n^2+14*n+56)*(1-1/a/x)^(-2-1/2*n)*(1+1/a/x)^(1+1/2*n)*(-a*c*x+c)^(2+1/2*n)/a/(4+n)/(6+n)+2*(n^2+14*n+56)*(1-
1/a/x)^(-2-1/2*n)*(1+1/a/x)^(1+1/2*n)*(-a*c*x+c)^(2+1/2*n)/a^2/(6+n)/(n^2+6*n+8)/x+(8+n)*(1-1/a/x)^(-2-1/2*n)*
(1+1/a/x)^(1+1/2*n)*x*(-a*c*x+c)^(2+1/2*n)/(6+n)-(a-1/x)*(1-1/a/x)^(-2-1/2*n)*(1+1/a/x)^(1+1/2*n)*x*(-a*c*x+c)
^(2+1/2*n)/a

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {6311, 6316, 92, 80, 47, 37} \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\frac {2 \left (n^2+14 n+56\right ) \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{-\frac {n}{2}-2} (c-a c x)^{\frac {n+4}{2}}}{a^2 (n+6) \left (n^2+6 n+8\right ) x}-\frac {\left (n^2+14 n+56\right ) \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{-\frac {n}{2}-2} (c-a c x)^{\frac {n+4}{2}}}{a (n+4) (n+6)}+\frac {(n+8) x \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{-\frac {n}{2}-2} (c-a c x)^{\frac {n+4}{2}}}{n+6}-\frac {x \left (a-\frac {1}{x}\right ) \left (\frac {1}{a x}+1\right )^{\frac {n+2}{2}} \left (1-\frac {1}{a x}\right )^{-\frac {n}{2}-2} (c-a c x)^{\frac {n+4}{2}}}{a} \]

[In]

Int[E^(n*ArcCoth[a*x])*(c - a*c*x)^(2 + n/2),x]

[Out]

-(((56 + 14*n + n^2)*(1 - 1/(a*x))^(-2 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*(c - a*c*x)^((4 + n)/2))/(a*(4 + n)*(6
 + n))) + (2*(56 + 14*n + n^2)*(1 - 1/(a*x))^(-2 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*(c - a*c*x)^((4 + n)/2))/(a^
2*(6 + n)*(8 + 6*n + n^2)*x) + ((8 + n)*(1 - 1/(a*x))^(-2 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*x*(c - a*c*x)^((4 +
 n)/2))/(6 + n) - ((a - x^(-1))*(1 - 1/(a*x))^(-2 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*x*(c - a*c*x)^((4 + n)/2))/
a

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c
, d, e, f, n, p}, x] &&  !RationalQ[p] && SumSimplerQ[p, 1]

Rule 92

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a + b*x
)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 3))), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 6311

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6316

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Dist[(-c^p)*x^m*(1/x)^m, S
ubst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, m,
n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \left (\left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} x^{-2-\frac {n}{2}} (c-a c x)^{2+\frac {n}{2}}\right ) \int e^{n \coth ^{-1}(a x)} \left (1-\frac {1}{a x}\right )^{2+\frac {n}{2}} x^{2+\frac {n}{2}} \, dx \\ & = -\left (\left (\left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (\frac {1}{x}\right )^{2+\frac {n}{2}} (c-a c x)^{2+\frac {n}{2}}\right ) \text {Subst}\left (\int x^{-4-\frac {n}{2}} \left (1-\frac {x}{a}\right )^2 \left (1+\frac {x}{a}\right )^{n/2} \, dx,x,\frac {1}{x}\right )\right ) \\ & = -\frac {\left (a-\frac {1}{x}\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{a}+\left (a \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (\frac {1}{x}\right )^{2+\frac {n}{2}} (c-a c x)^{2+\frac {n}{2}}\right ) \text {Subst}\left (\int x^{-4-\frac {n}{2}} \left (1+\frac {x}{a}\right )^{n/2} \left (-\frac {8+n}{2 a}+\frac {(4+n) x}{2 a^2}\right ) \, dx,x,\frac {1}{x}\right ) \\ & = \frac {(8+n) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{6+n}-\frac {\left (a-\frac {1}{x}\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{a}+\frac {\left (\left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (\frac {1}{x}\right )^{2+\frac {n}{2}} (c-a c x)^{2+\frac {n}{2}}\right ) \text {Subst}\left (\int x^{-3-\frac {n}{2}} \left (1+\frac {x}{a}\right )^{n/2} \, dx,x,\frac {1}{x}\right )}{2 a (6+n)} \\ & = -\frac {\left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} (c-a c x)^{\frac {4+n}{2}}}{a (4+n) (6+n)}+\frac {(8+n) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{6+n}-\frac {\left (a-\frac {1}{x}\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{a}-\frac {\left (\left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (\frac {1}{x}\right )^{2+\frac {n}{2}} (c-a c x)^{2+\frac {n}{2}}\right ) \text {Subst}\left (\int x^{-2-\frac {n}{2}} \left (1+\frac {x}{a}\right )^{n/2} \, dx,x,\frac {1}{x}\right )}{a^2 (4+n) (6+n)} \\ & = -\frac {\left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} (c-a c x)^{\frac {4+n}{2}}}{a (4+n) (6+n)}+\frac {2 \left (56+14 n+n^2\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} (c-a c x)^{\frac {4+n}{2}}}{a^2 (2+n) (4+n) (6+n) x}+\frac {(8+n) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{6+n}-\frac {\left (a-\frac {1}{x}\right ) \left (1-\frac {1}{a x}\right )^{-2-\frac {n}{2}} \left (1+\frac {1}{a x}\right )^{\frac {2+n}{2}} x (c-a c x)^{\frac {4+n}{2}}}{a} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.09 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.42 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\frac {2 c^2 \left (1-\frac {1}{a x}\right )^{-n/2} \left (1+\frac {1}{a x}\right )^{n/2} (1+a x) (c-a c x)^{n/2} \left (n^2 (-1+a x)^2+8 \left (7-4 a x+a^2 x^2\right )+2 n \left (7-10 a x+3 a^2 x^2\right )\right )}{a (2+n) (4+n) (6+n)} \]

[In]

Integrate[E^(n*ArcCoth[a*x])*(c - a*c*x)^(2 + n/2),x]

[Out]

(2*c^2*(1 + 1/(a*x))^(n/2)*(1 + a*x)*(c - a*c*x)^(n/2)*(n^2*(-1 + a*x)^2 + 8*(7 - 4*a*x + a^2*x^2) + 2*n*(7 -
10*a*x + 3*a^2*x^2)))/(a*(2 + n)*(4 + n)*(6 + n)*(1 - 1/(a*x))^(n/2))

Maple [A] (verified)

Time = 1.57 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.37

method result size
gosper \(\frac {2 \left (a x +1\right ) \left (a^{2} n^{2} x^{2}+6 n \,x^{2} a^{2}+8 a^{2} x^{2}-2 n^{2} x a -20 a n x -32 a x +n^{2}+14 n +56\right ) {\mathrm e}^{n \,\operatorname {arccoth}\left (a x \right )} \left (-a c x +c \right )^{2+\frac {n}{2}}}{\left (a x -1\right )^{2} a \left (n^{3}+12 n^{2}+44 n +48\right )}\) \(104\)

[In]

int(exp(n*arccoth(a*x))*(-a*c*x+c)^(2+1/2*n),x,method=_RETURNVERBOSE)

[Out]

2*(a*x+1)*(a^2*n^2*x^2+6*a^2*n*x^2+8*a^2*x^2-2*a*n^2*x-20*a*n*x-32*a*x+n^2+14*n+56)*exp(n*arccoth(a*x))*(-a*c*
x+c)^(2+1/2*n)/(a*x-1)^2/a/(n^3+12*n^2+44*n+48)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 185, normalized size of antiderivative = 0.67 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\frac {2 \, {\left ({\left (a^{3} n^{2} + 6 \, a^{3} n + 8 \, a^{3}\right )} x^{3} - {\left (a^{2} n^{2} + 14 \, a^{2} n + 24 \, a^{2}\right )} x^{2} + n^{2} - {\left (a n^{2} + 6 \, a n - 24 \, a\right )} x + 14 \, n + 56\right )} {\left (-a c x + c\right )}^{\frac {1}{2} \, n + 2} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n}}{a n^{3} + 12 \, a n^{2} + {\left (a^{3} n^{3} + 12 \, a^{3} n^{2} + 44 \, a^{3} n + 48 \, a^{3}\right )} x^{2} + 44 \, a n - 2 \, {\left (a^{2} n^{3} + 12 \, a^{2} n^{2} + 44 \, a^{2} n + 48 \, a^{2}\right )} x + 48 \, a} \]

[In]

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^(2+1/2*n),x, algorithm="fricas")

[Out]

2*((a^3*n^2 + 6*a^3*n + 8*a^3)*x^3 - (a^2*n^2 + 14*a^2*n + 24*a^2)*x^2 + n^2 - (a*n^2 + 6*a*n - 24*a)*x + 14*n
 + 56)*(-a*c*x + c)^(1/2*n + 2)*((a*x + 1)/(a*x - 1))^(1/2*n)/(a*n^3 + 12*a*n^2 + (a^3*n^3 + 12*a^3*n^2 + 44*a
^3*n + 48*a^3)*x^2 + 44*a*n - 2*(a^2*n^3 + 12*a^2*n^2 + 44*a^2*n + 48*a^2)*x + 48*a)

Sympy [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\int \left (- c \left (a x - 1\right )\right )^{\frac {n}{2} + 2} e^{n \operatorname {acoth}{\left (a x \right )}}\, dx \]

[In]

integrate(exp(n*acoth(a*x))*(-a*c*x+c)**(2+1/2*n),x)

[Out]

Integral((-c*(a*x - 1))**(n/2 + 2)*exp(n*acoth(a*x)), x)

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.44 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\frac {2 \, {\left ({\left (n^{2} + 6 \, n + 8\right )} a^{3} \left (-c\right )^{\frac {1}{2} \, n} c^{2} x^{3} - {\left (n^{2} + 14 \, n + 24\right )} a^{2} \left (-c\right )^{\frac {1}{2} \, n} c^{2} x^{2} - {\left (n^{2} + 6 \, n - 24\right )} a \left (-c\right )^{\frac {1}{2} \, n} c^{2} x + {\left (n^{2} + 14 \, n + 56\right )} \left (-c\right )^{\frac {1}{2} \, n} c^{2}\right )} {\left (a x + 1\right )}^{\frac {1}{2} \, n}}{{\left (n^{3} + 12 \, n^{2} + 44 \, n + 48\right )} a} \]

[In]

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^(2+1/2*n),x, algorithm="maxima")

[Out]

2*((n^2 + 6*n + 8)*a^3*(-c)^(1/2*n)*c^2*x^3 - (n^2 + 14*n + 24)*a^2*(-c)^(1/2*n)*c^2*x^2 - (n^2 + 6*n - 24)*a*
(-c)^(1/2*n)*c^2*x + (n^2 + 14*n + 56)*(-c)^(1/2*n)*c^2)*(a*x + 1)^(1/2*n)/((n^3 + 12*n^2 + 44*n + 48)*a)

Giac [F]

\[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\int { {\left (-a c x + c\right )}^{\frac {1}{2} \, n + 2} \left (\frac {a x + 1}{a x - 1}\right )^{\frac {1}{2} \, n} \,d x } \]

[In]

integrate(exp(n*arccoth(a*x))*(-a*c*x+c)^(2+1/2*n),x, algorithm="giac")

[Out]

integrate((-a*c*x + c)^(1/2*n + 2)*((a*x + 1)/(a*x - 1))^(1/2*n), x)

Mupad [B] (verification not implemented)

Time = 4.59 (sec) , antiderivative size = 223, normalized size of antiderivative = 0.80 \[ \int e^{n \coth ^{-1}(a x)} (c-a c x)^{2+\frac {n}{2}} \, dx=\frac {{\left (\frac {a\,x+1}{a\,x}\right )}^{n/2}\,\left (\frac {x^3\,{\left (c-a\,c\,x\right )}^{\frac {n}{2}+2}\,\left (2\,n^2+12\,n+16\right )}{n^3+12\,n^2+44\,n+48}+\frac {{\left (c-a\,c\,x\right )}^{\frac {n}{2}+2}\,\left (2\,n^2+28\,n+112\right )}{a^3\,\left (n^3+12\,n^2+44\,n+48\right )}-\frac {2\,x\,{\left (c-a\,c\,x\right )}^{\frac {n}{2}+2}\,\left (n^2+6\,n-24\right )}{a^2\,\left (n^3+12\,n^2+44\,n+48\right )}-\frac {x^2\,{\left (c-a\,c\,x\right )}^{\frac {n}{2}+2}\,\left (2\,n^2+28\,n+48\right )}{a\,\left (n^3+12\,n^2+44\,n+48\right )}\right )}{{\left (\frac {a\,x-1}{a\,x}\right )}^{n/2}\,\left (\frac {1}{a^2}-\frac {2\,x}{a}+x^2\right )} \]

[In]

int(exp(n*acoth(a*x))*(c - a*c*x)^(n/2 + 2),x)

[Out]

(((a*x + 1)/(a*x))^(n/2)*((x^3*(c - a*c*x)^(n/2 + 2)*(12*n + 2*n^2 + 16))/(44*n + 12*n^2 + n^3 + 48) + ((c - a
*c*x)^(n/2 + 2)*(28*n + 2*n^2 + 112))/(a^3*(44*n + 12*n^2 + n^3 + 48)) - (2*x*(c - a*c*x)^(n/2 + 2)*(6*n + n^2
 - 24))/(a^2*(44*n + 12*n^2 + n^3 + 48)) - (x^2*(c - a*c*x)^(n/2 + 2)*(28*n + 2*n^2 + 48))/(a*(44*n + 12*n^2 +
 n^3 + 48))))/(((a*x - 1)/(a*x))^(n/2)*(1/a^2 - (2*x)/a + x^2))