\(\int \frac {e^{\coth ^{-1}(a x)}}{(c-\frac {c}{a x})^2} \, dx\) [384]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 105 \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}+\frac {3 \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \]

[Out]

-4/3*(a+1/x)/a^2/c^2/(1-1/a^2/x^2)^(3/2)+3*arctanh((1-1/a^2/x^2)^(1/2))/a/c^2+1/3*(-9*a-11/x)/a^2/c^2/(1-1/a^2
/x^2)^(1/2)+x*(1-1/a^2/x^2)^(1/2)/c^2

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {6312, 866, 1819, 821, 272, 65, 214} \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {3 \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2}-\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {x \sqrt {1-\frac {1}{a^2 x^2}}}{c^2} \]

[In]

Int[E^ArcCoth[a*x]/(c - c/(a*x))^2,x]

[Out]

(-4*(a + x^(-1)))/(3*a^2*c^2*(1 - 1/(a^2*x^2))^(3/2)) - (9*a + 11/x)/(3*a^2*c^2*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt
[1 - 1/(a^2*x^2)]*x)/c^2 + (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/(a*c^2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1819

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rule 6312

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Dist[-c^n, Subst[Int[(c + d*x)^(p -
n)*((1 - x^2/a^2)^(n/2)/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\left (c \text {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x^2 \left (c-\frac {c x}{a}\right )^3} \, dx,x,\frac {1}{x}\right )\right ) \\ & = -\frac {\text {Subst}\left (\int \frac {\left (c+\frac {c x}{a}\right )^3}{x^2 \left (1-\frac {x^2}{a^2}\right )^{5/2}} \, dx,x,\frac {1}{x}\right )}{c^5} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}+\frac {\text {Subst}\left (\int \frac {-3 c^3-\frac {9 c^3 x}{a}-\frac {8 c^3 x^2}{a^2}}{x^2 \left (1-\frac {x^2}{a^2}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{3 c^5} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {\text {Subst}\left (\int \frac {3 c^3+\frac {9 c^3 x}{a}}{x^2 \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{3 c^5} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {3 \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{a c^2} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}-\frac {3 \text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a^2}}} \, dx,x,\frac {1}{x^2}\right )}{2 a c^2} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}+\frac {(3 a) \text {Subst}\left (\int \frac {1}{a^2-a^2 x^2} \, dx,x,\sqrt {1-\frac {1}{a^2 x^2}}\right )}{c^2} \\ & = -\frac {4 \left (a+\frac {1}{x}\right )}{3 a^2 c^2 \left (1-\frac {1}{a^2 x^2}\right )^{3/2}}-\frac {9 a+\frac {11}{x}}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {1-\frac {1}{a^2 x^2}} x}{c^2}+\frac {3 \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{a c^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.90 \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {14-5 a x-16 a^2 x^2+3 a^3 x^3+9 a \sqrt {1-\frac {1}{a^2 x^2}} x (-1+a x) \text {arctanh}\left (\sqrt {1-\frac {1}{a^2 x^2}}\right )}{3 a^2 c^2 \sqrt {1-\frac {1}{a^2 x^2}} x (-1+a x)} \]

[In]

Integrate[E^ArcCoth[a*x]/(c - c/(a*x))^2,x]

[Out]

(14 - 5*a*x - 16*a^2*x^2 + 3*a^3*x^3 + 9*a*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x)*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/
(3*a^2*c^2*Sqrt[1 - 1/(a^2*x^2)]*x*(-1 + a*x))

Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.76

method result size
risch \(\frac {a x -1}{a \,c^{2} \sqrt {\frac {a x -1}{a x +1}}}+\frac {\left (\frac {3 \ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right )}{a^{2} \sqrt {a^{2}}}-\frac {2 \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2}+2 \left (x -\frac {1}{a}\right ) a}}{3 a^{5} \left (x -\frac {1}{a}\right )^{2}}-\frac {13 \sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2}+2 \left (x -\frac {1}{a}\right ) a}}{3 a^{4} \left (x -\frac {1}{a}\right )}\right ) a^{2} \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{c^{2} \sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(185\)
default \(\frac {9 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{4} x^{3}+9 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{3} x^{3}-27 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}-6 \sqrt {a^{2}}\, \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} a x -27 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{2} x^{2}+27 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{2} x +5 \left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}+27 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a x -9 a \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right )-9 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{3 a \sqrt {a^{2}}\, \left (a x -1\right )^{2} c^{2} \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {\frac {a x -1}{a x +1}}}\) \(339\)

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x,method=_RETURNVERBOSE)

[Out]

1/a*(a*x-1)/c^2/((a*x-1)/(a*x+1))^(1/2)+(3/a^2*ln(a^2*x/(a^2)^(1/2)+(a^2*x^2-1)^(1/2))/(a^2)^(1/2)-2/3/a^5/(x-
1/a)^2*((x-1/a)^2*a^2+2*(x-1/a)*a)^(1/2)-13/3/a^4/(x-1/a)*((x-1/a)^2*a^2+2*(x-1/a)*a)^(1/2))*a^2/c^2/((a*x-1)/
(a*x+1))^(1/2)*((a*x-1)*(a*x+1))^(1/2)/(a*x+1)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.28 \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {9 \, {\left (a^{2} x^{2} - 2 \, a x + 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - 9 \, {\left (a^{2} x^{2} - 2 \, a x + 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (3 \, a^{3} x^{3} - 16 \, a^{2} x^{2} - 5 \, a x + 14\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{3 \, {\left (a^{3} c^{2} x^{2} - 2 \, a^{2} c^{2} x + a c^{2}\right )}} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="fricas")

[Out]

1/3*(9*(a^2*x^2 - 2*a*x + 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 9*(a^2*x^2 - 2*a*x + 1)*log(sqrt((a*x - 1)/(
a*x + 1)) - 1) + (3*a^3*x^3 - 16*a^2*x^2 - 5*a*x + 14)*sqrt((a*x - 1)/(a*x + 1)))/(a^3*c^2*x^2 - 2*a^2*c^2*x +
 a*c^2)

Sympy [F]

\[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {a^{2} \int \frac {x^{2}}{a^{2} x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - 2 a x \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} + \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx}{c^{2}} \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(c-c/a/x)**2,x)

[Out]

a**2*Integral(x**2/(a**2*x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - 2*a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) + sq
rt(a*x/(a*x + 1) - 1/(a*x + 1))), x)/c**2

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.30 \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {1}{3} \, a {\left (\frac {\frac {11 \, {\left (a x - 1\right )}}{a x + 1} - \frac {18 \, {\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + 1}{a^{2} c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{2}} - a^{2} c^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} + \frac {9 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{2}} - \frac {9 \, \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c^{2}}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="maxima")

[Out]

1/3*a*((11*(a*x - 1)/(a*x + 1) - 18*(a*x - 1)^2/(a*x + 1)^2 + 1)/(a^2*c^2*((a*x - 1)/(a*x + 1))^(5/2) - a^2*c^
2*((a*x - 1)/(a*x + 1))^(3/2)) + 9*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^2) - 9*log(sqrt((a*x - 1)/(a*x +
1)) - 1)/(a^2*c^2))

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a/x)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.99 \[ \int \frac {e^{\coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^2} \, dx=\frac {6\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )}{a\,c^2}-\frac {\frac {11\,\left (a\,x-1\right )}{3\,\left (a\,x+1\right )}-\frac {6\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}+\frac {1}{3}}{a\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}-a\,c^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/2}} \]

[In]

int(1/((c - c/(a*x))^2*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

(6*atanh(((a*x - 1)/(a*x + 1))^(1/2)))/(a*c^2) - ((11*(a*x - 1))/(3*(a*x + 1)) - (6*(a*x - 1)^2)/(a*x + 1)^2 +
 1/3)/(a*c^2*((a*x - 1)/(a*x + 1))^(3/2) - a*c^2*((a*x - 1)/(a*x + 1))^(5/2))