\(\int \frac {e^{2 \coth ^{-1}(a x)}}{(c-\frac {c}{a x})^{5/2}} \, dx\) [453]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 118 \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=-\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}-\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}+\frac {9 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a c^{5/2}} \]

[Out]

-9/5/a/(c-c/a/x)^(5/2)-3/a/c/(c-c/a/x)^(3/2)+x/(c-c/a/x)^(5/2)+9*arctanh((c-c/a/x)^(1/2)/c^(1/2))/a/c^(5/2)-9/
a/c^2/(c-c/a/x)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {6302, 6268, 25, 528, 382, 79, 53, 65, 214} \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\frac {9 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a c^{5/2}}-\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}-\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}} \]

[In]

Int[E^(2*ArcCoth[a*x])/(c - c/(a*x))^(5/2),x]

[Out]

-9/(5*a*(c - c/(a*x))^(5/2)) - 3/(a*c*(c - c/(a*x))^(3/2)) - 9/(a*c^2*Sqrt[c - c/(a*x)]) + x/(c - c/(a*x))^(5/
2) + (9*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]])/(a*c^(5/2))

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[u*((
a + b*x^n)^(m + p)/x^(n*p)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(a + b/x^n)^p*((c +
 d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rule 528

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 6268

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[u*(c + d/x)^p*((1 + a*x)^(n/
2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{2 \text {arctanh}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx \\ & = -\int \frac {1+a x}{\left (c-\frac {c}{a x}\right )^{5/2} (1-a x)} \, dx \\ & = \frac {c \int \frac {1+a x}{\left (c-\frac {c}{a x}\right )^{7/2} x} \, dx}{a} \\ & = \frac {c \int \frac {a+\frac {1}{x}}{\left (c-\frac {c}{a x}\right )^{7/2}} \, dx}{a} \\ & = -\frac {c \text {Subst}\left (\int \frac {a+x}{x^2 \left (c-\frac {c x}{a}\right )^{7/2}} \, dx,x,\frac {1}{x}\right )}{a} \\ & = \frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {(9 c) \text {Subst}\left (\int \frac {1}{x \left (c-\frac {c x}{a}\right )^{7/2}} \, dx,x,\frac {1}{x}\right )}{2 a} \\ & = -\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {9 \text {Subst}\left (\int \frac {1}{x \left (c-\frac {c x}{a}\right )^{5/2}} \, dx,x,\frac {1}{x}\right )}{2 a} \\ & = -\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {9 \text {Subst}\left (\int \frac {1}{x \left (c-\frac {c x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{2 a c} \\ & = -\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}-\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {9 \text {Subst}\left (\int \frac {1}{x \sqrt {c-\frac {c x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 a c^2} \\ & = -\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}-\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}+\frac {9 \text {Subst}\left (\int \frac {1}{a-\frac {a x^2}{c}} \, dx,x,\sqrt {c-\frac {c}{a x}}\right )}{c^3} \\ & = -\frac {9}{5 a \left (c-\frac {c}{a x}\right )^{5/2}}-\frac {3}{a c \left (c-\frac {c}{a x}\right )^{3/2}}-\frac {9}{a c^2 \sqrt {c-\frac {c}{a x}}}+\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}+\frac {9 \text {arctanh}\left (\frac {\sqrt {c-\frac {c}{a x}}}{\sqrt {c}}\right )}{a c^{5/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.04 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.49 \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\frac {x}{\left (c-\frac {c}{a x}\right )^{5/2}}-\frac {9 \operatorname {Hypergeometric2F1}\left (-\frac {5}{2},1,-\frac {3}{2},1-\frac {1}{a x}\right )}{5 a \left (c-\frac {c}{a x}\right )^{5/2}} \]

[In]

Integrate[E^(2*ArcCoth[a*x])/(c - c/(a*x))^(5/2),x]

[Out]

x/(c - c/(a*x))^(5/2) - (9*Hypergeometric2F1[-5/2, 1, -3/2, 1 - 1/(a*x)])/(5*a*(c - c/(a*x))^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(246\) vs. \(2(102)=204\).

Time = 0.54 (sec) , antiderivative size = 247, normalized size of antiderivative = 2.09

method result size
risch \(\frac {a x -1}{a \,c^{2} \sqrt {\frac {c \left (a x -1\right )}{a x}}}+\frac {\left (\frac {9 \ln \left (\frac {-\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}-a c x}\right )}{2 a^{3} \sqrt {a^{2} c}}-\frac {4 \sqrt {a^{2} c \left (x -\frac {1}{a}\right )^{2}+\left (x -\frac {1}{a}\right ) a c}}{5 a^{7} c \left (x -\frac {1}{a}\right )^{3}}-\frac {18 \sqrt {a^{2} c \left (x -\frac {1}{a}\right )^{2}+\left (x -\frac {1}{a}\right ) a c}}{5 a^{6} c \left (x -\frac {1}{a}\right )^{2}}-\frac {54 \sqrt {a^{2} c \left (x -\frac {1}{a}\right )^{2}+\left (x -\frac {1}{a}\right ) a c}}{5 a^{5} c \left (x -\frac {1}{a}\right )}\right ) a^{2} \sqrt {c \left (a x -1\right ) a x}}{c^{2} x \sqrt {\frac {c \left (a x -1\right )}{a x}}}\) \(247\)
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, x \left (90 a^{\frac {9}{2}} \sqrt {\left (a x -1\right ) x}\, x^{4}+45 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{4} x^{4}-80 a^{\frac {7}{2}} \left (\left (a x -1\right ) x \right )^{\frac {3}{2}} x^{2}-360 a^{\frac {7}{2}} \sqrt {\left (a x -1\right ) x}\, x^{3}-180 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{3} x^{3}+132 a^{\frac {5}{2}} \left (\left (a x -1\right ) x \right )^{\frac {3}{2}} x +540 a^{\frac {5}{2}} \sqrt {\left (a x -1\right ) x}\, x^{2}+270 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a^{2} x^{2}-60 a^{\frac {3}{2}} \left (\left (a x -1\right ) x \right )^{\frac {3}{2}}-360 \sqrt {\left (a x -1\right ) x}\, a^{\frac {3}{2}} x -180 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right ) a x +90 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+45 \ln \left (\frac {2 \sqrt {\left (a x -1\right ) x}\, \sqrt {a}+2 a x -1}{2 \sqrt {a}}\right )\right )}{10 \sqrt {\left (a x -1\right ) x}\, c^{3} \sqrt {a}\, \left (a x -1\right )^{4}}\) \(328\)

[In]

int(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/a*(a*x-1)/c^2/(c*(a*x-1)/a/x)^(1/2)+(9/2/a^3*ln((-1/2*a*c+a^2*c*x)/(a^2*c)^(1/2)+(a^2*c*x^2-a*c*x)^(1/2))/(a
^2*c)^(1/2)-4/5/a^7/c/(x-1/a)^3*(a^2*c*(x-1/a)^2+(x-1/a)*a*c)^(1/2)-18/5/a^6/c/(x-1/a)^2*(a^2*c*(x-1/a)^2+(x-1
/a)*a*c)^(1/2)-54/5/a^5/c/(x-1/a)*(a^2*c*(x-1/a)^2+(x-1/a)*a*c)^(1/2))*a^2/c^2/x/(c*(a*x-1)/a/x)^(1/2)*(c*(a*x
-1)*a*x)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 294, normalized size of antiderivative = 2.49 \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\left [\frac {45 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {c} \log \left (-2 \, a c x - 2 \, a \sqrt {c} x \sqrt {\frac {a c x - c}{a x}} + c\right ) + 2 \, {\left (5 \, a^{4} x^{4} - 69 \, a^{3} x^{3} + 105 \, a^{2} x^{2} - 45 \, a x\right )} \sqrt {\frac {a c x - c}{a x}}}{10 \, {\left (a^{4} c^{3} x^{3} - 3 \, a^{3} c^{3} x^{2} + 3 \, a^{2} c^{3} x - a c^{3}\right )}}, -\frac {45 \, {\left (a^{3} x^{3} - 3 \, a^{2} x^{2} + 3 \, a x - 1\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} \sqrt {\frac {a c x - c}{a x}}}{c}\right ) - {\left (5 \, a^{4} x^{4} - 69 \, a^{3} x^{3} + 105 \, a^{2} x^{2} - 45 \, a x\right )} \sqrt {\frac {a c x - c}{a x}}}{5 \, {\left (a^{4} c^{3} x^{3} - 3 \, a^{3} c^{3} x^{2} + 3 \, a^{2} c^{3} x - a c^{3}\right )}}\right ] \]

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(5/2),x, algorithm="fricas")

[Out]

[1/10*(45*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(c)*log(-2*a*c*x - 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + c)
+ 2*(5*a^4*x^4 - 69*a^3*x^3 + 105*a^2*x^2 - 45*a*x)*sqrt((a*c*x - c)/(a*x)))/(a^4*c^3*x^3 - 3*a^3*c^3*x^2 + 3*
a^2*c^3*x - a*c^3), -1/5*(45*(a^3*x^3 - 3*a^2*x^2 + 3*a*x - 1)*sqrt(-c)*arctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x)
)/c) - (5*a^4*x^4 - 69*a^3*x^3 + 105*a^2*x^2 - 45*a*x)*sqrt((a*c*x - c)/(a*x)))/(a^4*c^3*x^3 - 3*a^3*c^3*x^2 +
 3*a^2*c^3*x - a*c^3)]

Sympy [F]

\[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\int \frac {a x + 1}{\left (- c \left (-1 + \frac {1}{a x}\right )\right )^{\frac {5}{2}} \left (a x - 1\right )}\, dx \]

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)**(5/2),x)

[Out]

Integral((a*x + 1)/((-c*(-1 + 1/(a*x)))**(5/2)*(a*x - 1)), x)

Maxima [F]

\[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\int { \frac {a x + 1}{{\left (a x - 1\right )} {\left (c - \frac {c}{a x}\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(5/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)/((a*x - 1)*(c - c/(a*x))^(5/2)), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 316 vs. \(2 (102) = 204\).

Time = 0.48 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.68 \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\frac {9 \, \log \left (c^{4} {\left | a \right |}\right ) \mathrm {sgn}\left (x\right )}{14 \, a c^{\frac {5}{2}}} - \frac {9 \, \log \left ({\left | 2 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{7} \sqrt {c} {\left | a \right |} - 13 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{6} a c + 36 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{5} c^{\frac {3}{2}} {\left | a \right |} - 55 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{4} a c^{2} + 50 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{3} c^{\frac {5}{2}} {\left | a \right |} - 27 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )}^{2} a c^{3} + 8 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - a c x}\right )} c^{\frac {7}{2}} {\left | a \right |} - a c^{4} \right |}\right ) \mathrm {sgn}\left (x\right )}{14 \, a c^{\frac {5}{2}}} + \frac {\sqrt {a^{2} c x^{2} - a c x} {\left | a \right |} \mathrm {sgn}\left (x\right )}{a^{2} c^{3}} \]

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(5/2),x, algorithm="giac")

[Out]

9/14*log(c^4*abs(a))*sgn(x)/(a*c^(5/2)) - 9/14*log(abs(2*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^7*sqrt(c)*a
bs(a) - 13*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^6*a*c + 36*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^5*c^
(3/2)*abs(a) - 55*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^4*a*c^2 + 50*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c
*x))^3*c^(5/2)*abs(a) - 27*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - a*c*x))^2*a*c^3 + 8*(sqrt(a^2*c)*x - sqrt(a^2*c*x
^2 - a*c*x))*c^(7/2)*abs(a) - a*c^4))*sgn(x)/(a*c^(5/2)) + sqrt(a^2*c*x^2 - a*c*x)*abs(a)*sgn(x)/(a^2*c^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{2 \coth ^{-1}(a x)}}{\left (c-\frac {c}{a x}\right )^{5/2}} \, dx=\int \frac {a\,x+1}{{\left (c-\frac {c}{a\,x}\right )}^{5/2}\,\left (a\,x-1\right )} \,d x \]

[In]

int((a*x + 1)/((c - c/(a*x))^(5/2)*(a*x - 1)),x)

[Out]

int((a*x + 1)/((c - c/(a*x))^(5/2)*(a*x - 1)), x)