\(\int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx\) [493]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 76 \[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=-\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}+2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right ) \]

[Out]

2*arctanh(c^(1/2)*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2))*c^(1/2)-2*c*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2)

Rubi [A] (verified)

Time = 0.16 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6313, 879, 889, 214} \[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )-\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}} \]

[In]

Int[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x,x]

[Out]

(-2*c*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/
(a*x)]]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 879

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*
x)^m)*(f + g*x)^(n + 1)*((a + c*x^2)^p/(g*(m - n - 1))), x] - Dist[c*m*((e*f + d*g)/(e^2*g*(m - n - 1))), Int[
(d + e*x)^(m + 1)*(f + g*x)^n*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n,
0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]

Rule 889

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 6313

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[-c^n, Subst[Int[(c +
 d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\left (c \text {Subst}\left (\int \frac {\sqrt {1-\frac {x^2}{a^2}}}{x \sqrt {c-\frac {c x}{a}}} \, dx,x,\frac {1}{x}\right )\right ) \\ & = -\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-\text {Subst}\left (\int \frac {\sqrt {c-\frac {c x}{a}}}{x \sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}-\frac {\left (2 c^2\right ) \text {Subst}\left (\int \frac {1}{-\frac {c}{a^2}+\frac {c^2 x^2}{a^2}} \, dx,x,\frac {\sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right )}{a^2} \\ & = -\frac {2 c \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}+2 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}}}{\sqrt {c-\frac {c}{a x}}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.74 \[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\frac {-2 a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} x+\sqrt {c} (1-a x) \log (1-a x)+\sqrt {c} (-1+a x) \log \left (2 a^2 \sqrt {c} \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} x^2+c \left (-1-a x+2 a^2 x^2\right )\right )}{-1+a x} \]

[In]

Integrate[(E^ArcCoth[a*x]*Sqrt[c - c/(a*x)])/x,x]

[Out]

(-2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x + Sqrt[c]*(1 - a*x)*Log[1 - a*x] + Sqrt[c]*(-1 + a*x)*Log[2*a^
2*Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x^2 + c*(-1 - a*x + 2*a^2*x^2)])/(-1 + a*x)

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.16

method result size
default \(\frac {\sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (\ln \left (\frac {2 \sqrt {\left (a x +1\right ) x}\, \sqrt {a}+2 a x +1}{2 \sqrt {a}}\right ) a x -2 \sqrt {\left (a x +1\right ) x}\, \sqrt {a}\right )}{\sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\left (a x +1\right ) x}\, \sqrt {a}}\) \(88\)
risch \(-\frac {2 \sqrt {\frac {c \left (a x -1\right )}{a x}}}{\sqrt {\frac {a x -1}{a x +1}}}+\frac {a \ln \left (\frac {\frac {1}{2} a c +a^{2} c x}{\sqrt {a^{2} c}}+\sqrt {a^{2} c \,x^{2}+a c x}\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\left (a x +1\right ) a c x}}{\sqrt {a^{2} c}\, \sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(127\)

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

1/((a*x-1)/(a*x+1))^(1/2)*(c*(a*x-1)/a/x)^(1/2)*(ln(1/2*(2*((a*x+1)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2))*a*x-2*(
(a*x+1)*x)^(1/2)*a^(1/2))/((a*x+1)*x)^(1/2)/a^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 131 vs. \(2 (64) = 128\).

Time = 0.27 (sec) , antiderivative size = 275, normalized size of antiderivative = 3.62 \[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\left [\frac {{\left (a x - 1\right )} \sqrt {c} \log \left (-\frac {8 \, a^{3} c x^{3} - 7 \, a c x + 4 \, {\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}} - c}{a x - 1}\right ) - 4 \, {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, {\left (a x - 1\right )}}, -\frac {{\left (a x - 1\right )} \sqrt {-c} \arctan \left (\frac {2 \, {\left (a^{2} x^{2} + a x\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) + 2 \, {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{a x - 1}\right ] \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/2*((a*x - 1)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x + 4*(2*a^3*x^3 + 3*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)/(
a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) - 4*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*
x)))/(a*x - 1), -((a*x - 1)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x -
 c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) + 2*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a*x -
1)]

Sympy [F]

\[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right )}}{x \sqrt {\frac {a x - 1}{a x + 1}}}\, dx \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(c-c/a/x)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))/(x*sqrt((a*x - 1)/(a*x + 1))), x)

Maxima [F]

\[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int { \frac {\sqrt {c - \frac {c}{a x}}}{x \sqrt {\frac {a x - 1}{a x + 1}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))/(x*sqrt((a*x - 1)/(a*x + 1))), x)

Giac [F]

\[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int { \frac {\sqrt {c - \frac {c}{a x}}}{x \sqrt {\frac {a x - 1}{a x + 1}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(c-c/a/x)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))/(x*sqrt((a*x - 1)/(a*x + 1))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x} \, dx=\int \frac {\sqrt {c-\frac {c}{a\,x}}}{x\,\sqrt {\frac {a\,x-1}{a\,x+1}}} \,d x \]

[In]

int((c - c/(a*x))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

int((c - c/(a*x))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(1/2)), x)