\(\int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx\) [521]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 70 \[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=-\frac {8 a c \sqrt {1-\frac {1}{a^2 x^2}}}{3 \sqrt {c-\frac {c}{a x}}}-\frac {2}{3} a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} \]

[Out]

-8/3*a*c*(1-1/a^2/x^2)^(1/2)/(c-c/a/x)^(1/2)-2/3*a*(1-1/a^2/x^2)^(1/2)*(c-c/a/x)^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6313, 671, 663} \[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=-\frac {2}{3} a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}}-\frac {8 a c \sqrt {1-\frac {1}{a^2 x^2}}}{3 \sqrt {c-\frac {c}{a x}}} \]

[In]

Int[Sqrt[c - c/(a*x)]/(E^ArcCoth[a*x]*x^2),x]

[Out]

(-8*a*c*Sqrt[1 - 1/(a^2*x^2)])/(3*Sqrt[c - c/(a*x)]) - (2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)])/3

Rule 663

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(p + 1))), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p,
 0]

Rule 671

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*((a + c*x^2)^(p
 + 1)/(c*(m + 2*p + 1))), x] + Dist[2*c*d*(Simplify[m + p]/(c*(m + 2*p + 1))), Int[(d + e*x)^(m - 1)*(a + c*x^
2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p]
, 0]

Rule 6313

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[-c^n, Subst[Int[(c +
 d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {\left (c-\frac {c x}{a}\right )^{3/2}}{\sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right )}{c} \\ & = -\frac {2}{3} a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}}-\frac {4}{3} \text {Subst}\left (\int \frac {\sqrt {c-\frac {c x}{a}}}{\sqrt {1-\frac {x^2}{a^2}}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {8 a c \sqrt {1-\frac {1}{a^2 x^2}}}{3 \sqrt {c-\frac {c}{a x}}}-\frac {2}{3} a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.66 \[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=-\frac {2 a \sqrt {1-\frac {1}{a^2 x^2}} \sqrt {c-\frac {c}{a x}} (-1+5 a x)}{-3+3 a x} \]

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^ArcCoth[a*x]*x^2),x]

[Out]

(-2*a*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*(-1 + 5*a*x))/(-3 + 3*a*x)

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.77

method result size
gosper \(-\frac {2 \left (a x +1\right ) \left (5 a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {a x -1}{a x +1}}}{3 \left (a x -1\right ) x}\) \(54\)
default \(-\frac {2 \left (a x +1\right ) \left (5 a x -1\right ) \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \sqrt {\frac {a x -1}{a x +1}}}{3 \left (a x -1\right ) x}\) \(54\)
risch \(-\frac {2 \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {\frac {c \left (a x -1\right )}{a x}}\, \left (5 a^{2} x^{2}+4 a x -1\right )}{3 \left (a x -1\right ) x}\) \(57\)

[In]

int((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-2/3*(a*x+1)*(5*a*x-1)*(c*(a*x-1)/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/(a*x-1)/x

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.84 \[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=-\frac {2 \, {\left (5 \, a^{2} x^{2} + 4 \, a x - 1\right )} \sqrt {\frac {a x - 1}{a x + 1}} \sqrt {\frac {a c x - c}{a x}}}{3 \, {\left (a x^{2} - x\right )}} \]

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="fricas")

[Out]

-2/3*(5*a^2*x^2 + 4*a*x - 1)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(a*x^2 - x)

Sympy [F]

\[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=\int \frac {\sqrt {\frac {a x - 1}{a x + 1}} \sqrt {- c \left (-1 + \frac {1}{a x}\right )}}{x^{2}}\, dx \]

[In]

integrate((c-c/a/x)**(1/2)*((a*x-1)/(a*x+1))**(1/2)/x**2,x)

[Out]

Integral(sqrt((a*x - 1)/(a*x + 1))*sqrt(-c*(-1 + 1/(a*x)))/x**2, x)

Maxima [F]

\[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=\int { \frac {\sqrt {c - \frac {c}{a x}} \sqrt {\frac {a x - 1}{a x + 1}}}{x^{2}} \,d x } \]

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))*sqrt((a*x - 1)/(a*x + 1))/x^2, x)

Giac [F]

\[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=\int { \frac {\sqrt {c - \frac {c}{a x}} \sqrt {\frac {a x - 1}{a x + 1}}}{x^{2}} \,d x } \]

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))*sqrt((a*x - 1)/(a*x + 1))/x^2, x)

Mupad [B] (verification not implemented)

Time = 4.02 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.77 \[ \int \frac {e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a x}}}{x^2} \, dx=-\frac {2\,\sqrt {c-\frac {c}{a\,x}}\,\sqrt {\frac {a\,x-1}{a\,x+1}}\,\left (5\,a^2\,x^2+4\,a\,x-1\right )}{3\,x\,\left (a\,x-1\right )} \]

[In]

int(((c - c/(a*x))^(1/2)*((a*x - 1)/(a*x + 1))^(1/2))/x^2,x)

[Out]

-(2*(c - c/(a*x))^(1/2)*((a*x - 1)/(a*x + 1))^(1/2)*(4*a*x + 5*a^2*x^2 - 1))/(3*x*(a*x - 1))