\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx\) [720]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 130 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x}+\frac {7}{8} a^4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

[Out]

7/8*a^4*arctanh((-a^2*c*x^2+c)^(1/2)/c^(1/2))*c^(1/2)+1/4*(-a^2*c*x^2+c)^(1/2)/x^4-2/3*a*(-a^2*c*x^2+c)^(1/2)/
x^3+7/8*a^2*(-a^2*c*x^2+c)^(1/2)/x^2-4/3*a^3*(-a^2*c*x^2+c)^(1/2)/x

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {6302, 6287, 1821, 849, 821, 272, 65, 214} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}+\frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7}{8} a^4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x} \]

[In]

Int[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x^5),x]

[Out]

Sqrt[c - a^2*c*x^2]/(4*x^4) - (2*a*Sqrt[c - a^2*c*x^2])/(3*x^3) + (7*a^2*Sqrt[c - a^2*c*x^2])/(8*x^2) - (4*a^3
*Sqrt[c - a^2*c*x^2])/(3*x) + (7*a^4*Sqrt[c]*ArcTanh[Sqrt[c - a^2*c*x^2]/Sqrt[c]])/8

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rule 849

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*
(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 + a*e^2)), Int[
(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, p}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || Integer
sQ[2*m, 2*p])

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 6287

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[x^m*
((c + d*x^2)^(p + n/2)/(1 - a*x)^n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p
] || GtQ[c, 0]) && ILtQ[n/2, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx \\ & = -\left (c \int \frac {(1-a x)^2}{x^5 \sqrt {c-a^2 c x^2}} \, dx\right ) \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}+\frac {1}{4} \int \frac {8 a c-7 a^2 c x}{x^4 \sqrt {c-a^2 c x^2}} \, dx \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}-\frac {\int \frac {21 a^2 c^2-16 a^3 c^2 x}{x^3 \sqrt {c-a^2 c x^2}} \, dx}{12 c} \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}+\frac {\int \frac {32 a^3 c^3-21 a^4 c^3 x}{x^2 \sqrt {c-a^2 c x^2}} \, dx}{24 c^2} \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x}-\frac {1}{8} \left (7 a^4 c\right ) \int \frac {1}{x \sqrt {c-a^2 c x^2}} \, dx \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x}-\frac {1}{16} \left (7 a^4 c\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c-a^2 c x}} \, dx,x,x^2\right ) \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x}+\frac {1}{8} \left (7 a^2\right ) \text {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c-a^2 c x^2}\right ) \\ & = \frac {\sqrt {c-a^2 c x^2}}{4 x^4}-\frac {2 a \sqrt {c-a^2 c x^2}}{3 x^3}+\frac {7 a^2 \sqrt {c-a^2 c x^2}}{8 x^2}-\frac {4 a^3 \sqrt {c-a^2 c x^2}}{3 x}+\frac {7}{8} a^4 \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.73 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\frac {\sqrt {c-a^2 c x^2} \left (6-16 a x+21 a^2 x^2-32 a^3 x^3\right )}{24 x^4}-\frac {7}{8} a^4 \sqrt {c} \log (x)+\frac {7}{8} a^4 \sqrt {c} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right ) \]

[In]

Integrate[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x^5),x]

[Out]

(Sqrt[c - a^2*c*x^2]*(6 - 16*a*x + 21*a^2*x^2 - 32*a^3*x^3))/(24*x^4) - (7*a^4*Sqrt[c]*Log[x])/8 + (7*a^4*Sqrt
[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]])/8

Maple [A] (verified)

Time = 0.75 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.73

method result size
risch \(\frac {\left (32 a^{5} x^{5}-21 a^{4} x^{4}-16 a^{3} x^{3}+15 a^{2} x^{2}-16 a x +6\right ) c}{24 x^{4} \sqrt {-c \left (a^{2} x^{2}-1\right )}}+\frac {7 a^{4} \sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )}{8}\) \(95\)
default \(\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{4 c \,x^{4}}-\frac {9 a^{2} \left (-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{2 c \,x^{2}}-\frac {a^{2} \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )}{2}\right )}{4}-2 a^{4} \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )-\frac {2 a \left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{3 c \,x^{3}}+2 a^{3} \left (-\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{c x}-2 a^{2} \left (\frac {x \sqrt {-a^{2} c \,x^{2}+c}}{2}+\frac {c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{2 \sqrt {a^{2} c}}\right )\right )+2 a^{4} \left (\sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}+\frac {a c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}}\right )}{\sqrt {a^{2} c}}\right )\) \(332\)

[In]

int((a*x-1)*(-a^2*c*x^2+c)^(1/2)/(a*x+1)/x^5,x,method=_RETURNVERBOSE)

[Out]

1/24*(32*a^5*x^5-21*a^4*x^4-16*a^3*x^3+15*a^2*x^2-16*a*x+6)/x^4/(-c*(a^2*x^2-1))^(1/2)*c+7/8*a^4*c^(1/2)*ln((2
*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.39 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\left [\frac {21 \, a^{4} \sqrt {c} x^{4} \log \left (-\frac {a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) - 2 \, {\left (32 \, a^{3} x^{3} - 21 \, a^{2} x^{2} + 16 \, a x - 6\right )} \sqrt {-a^{2} c x^{2} + c}}{48 \, x^{4}}, \frac {21 \, a^{4} \sqrt {-c} x^{4} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) - {\left (32 \, a^{3} x^{3} - 21 \, a^{2} x^{2} + 16 \, a x - 6\right )} \sqrt {-a^{2} c x^{2} + c}}{24 \, x^{4}}\right ] \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="fricas")

[Out]

[1/48*(21*a^4*sqrt(c)*x^4*log(-(a^2*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) - 2*(32*a^3*x^3 - 21*a^
2*x^2 + 16*a*x - 6)*sqrt(-a^2*c*x^2 + c))/x^4, 1/24*(21*a^4*sqrt(-c)*x^4*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c)/
(a^2*c*x^2 - c)) - (32*a^3*x^3 - 21*a^2*x^2 + 16*a*x - 6)*sqrt(-a^2*c*x^2 + c))/x^4]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x - 1\right )}{x^{5} \left (a x + 1\right )}\, dx \]

[In]

integrate((-a**2*c*x**2+c)**(1/2)*(a*x-1)/(a*x+1)/x**5,x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x - 1)/(x**5*(a*x + 1)), x)

Maxima [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\int { \frac {\sqrt {-a^{2} c x^{2} + c} {\left (a x - 1\right )}}{{\left (a x + 1\right )} x^{5}} \,d x } \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*(a*x - 1)/((a*x + 1)*x^5), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 324 vs. \(2 (106) = 212\).

Time = 0.28 (sec) , antiderivative size = 324, normalized size of antiderivative = 2.49 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=-\frac {7 \, a^{4} c \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{4 \, \sqrt {-c}} + \frac {21 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{7} a^{4} c - 45 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{5} a^{4} c^{2} - 96 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{4} a^{3} \sqrt {-c} c^{2} {\left | a \right |} - 45 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{3} a^{4} c^{3} + 128 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} a^{3} \sqrt {-c} c^{3} {\left | a \right |} + 21 \, {\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )} a^{4} c^{4} - 32 \, a^{3} \sqrt {-c} c^{4} {\left | a \right |}}{12 \, {\left ({\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} - c\right )}^{4}} \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="giac")

[Out]

-7/4*a^4*c*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) + 1/12*(21*(sqrt(-a^2*c)*x - sqr
t(-a^2*c*x^2 + c))^7*a^4*c - 45*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^5*a^4*c^2 - 96*(sqrt(-a^2*c)*x - sqrt(
-a^2*c*x^2 + c))^4*a^3*sqrt(-c)*c^2*abs(a) - 45*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^3*a^4*c^3 + 128*(sqrt(
-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2*a^3*sqrt(-c)*c^3*abs(a) + 21*(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))*a^4*c
^4 - 32*a^3*sqrt(-c)*c^4*abs(a))/((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)^4

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^5} \, dx=\int \frac {\sqrt {c-a^2\,c\,x^2}\,\left (a\,x-1\right )}{x^5\,\left (a\,x+1\right )} \,d x \]

[In]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x^5*(a*x + 1)),x)

[Out]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x^5*(a*x + 1)), x)