\(\int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx\) [776]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 104 \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=-\frac {2 \sqrt {1+\frac {1}{a x}}}{a c \sqrt {1-\frac {1}{a x}}}+\frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}+\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a c} \]

[Out]

arctanh((1-1/a/x)^(1/2)*(1+1/a/x)^(1/2))/a/c-2*(1+1/a/x)^(1/2)/a/c/(1-1/a/x)^(1/2)+x*(1+1/a/x)^(1/2)/c/(1-1/a/
x)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {6329, 105, 21, 96, 94, 214} \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a x}} \sqrt {\frac {1}{a x}+1}\right )}{a c}+\frac {x \sqrt {\frac {1}{a x}+1}}{c \sqrt {1-\frac {1}{a x}}}-\frac {2 \sqrt {\frac {1}{a x}+1}}{a c \sqrt {1-\frac {1}{a x}}} \]

[In]

Int[E^ArcCoth[a*x]/(c - c/(a^2*x^2)),x]

[Out]

(-2*Sqrt[1 + 1/(a*x)])/(a*c*Sqrt[1 - 1/(a*x)]) + (Sqrt[1 + 1/(a*x)]*x)/(c*Sqrt[1 - 1/(a*x)]) + ArcTanh[Sqrt[1
- 1/(a*x)]*Sqrt[1 + 1/(a*x)]]/(a*c)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 94

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 105

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] &
& (IntegerQ[n] || IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6329

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[-c^p, Subst[Int[(1 - x/a)^(p
- n/2)*((1 + x/a)^(p + n/2)/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !Integ
erQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {1}{x^2 \left (1-\frac {x}{a}\right )^{3/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{c} \\ & = \frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}+\frac {\text {Subst}\left (\int \frac {-\frac {1}{a}-\frac {x}{a^2}}{x \left (1-\frac {x}{a}\right )^{3/2} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{c} \\ & = \frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}-\frac {\text {Subst}\left (\int \frac {\sqrt {1+\frac {x}{a}}}{x \left (1-\frac {x}{a}\right )^{3/2}} \, dx,x,\frac {1}{x}\right )}{a c} \\ & = -\frac {2 \sqrt {1+\frac {1}{a x}}}{a c \sqrt {1-\frac {1}{a x}}}+\frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}-\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {1-\frac {x}{a}} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a c} \\ & = -\frac {2 \sqrt {1+\frac {1}{a x}}}{a c \sqrt {1-\frac {1}{a x}}}+\frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}+\frac {\text {Subst}\left (\int \frac {1}{\frac {1}{a}-\frac {x^2}{a}} \, dx,x,\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a^2 c} \\ & = -\frac {2 \sqrt {1+\frac {1}{a x}}}{a c \sqrt {1-\frac {1}{a x}}}+\frac {\sqrt {1+\frac {1}{a x}} x}{c \sqrt {1-\frac {1}{a x}}}+\frac {\text {arctanh}\left (\sqrt {1-\frac {1}{a x}} \sqrt {1+\frac {1}{a x}}\right )}{a c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.54 \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\frac {\frac {\sqrt {1-\frac {1}{a^2 x^2}} x (-2+a x)}{-1+a x}+\frac {\log \left (\left (1+\sqrt {1-\frac {1}{a^2 x^2}}\right ) x\right )}{a}}{c} \]

[In]

Integrate[E^ArcCoth[a*x]/(c - c/(a^2*x^2)),x]

[Out]

((Sqrt[1 - 1/(a^2*x^2)]*x*(-2 + a*x))/(-1 + a*x) + Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]/a)/c

Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.38

method result size
risch \(\frac {a x -1}{a c \sqrt {\frac {a x -1}{a x +1}}}+\frac {\left (\frac {\ln \left (\frac {a^{2} x}{\sqrt {a^{2}}}+\sqrt {a^{2} x^{2}-1}\right )}{a^{2} \sqrt {a^{2}}}-\frac {\sqrt {\left (x -\frac {1}{a}\right )^{2} a^{2}+2 \left (x -\frac {1}{a}\right ) a}}{a^{4} \left (x -\frac {1}{a}\right )}\right ) a^{2} \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{c \sqrt {\frac {a x -1}{a x +1}}\, \left (a x +1\right )}\) \(144\)
default \(-\frac {-3 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a^{2} x^{2}-2 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{3} x^{2}+\left (\left (a x -1\right ) \left (a x +1\right )\right )^{\frac {3}{2}} \sqrt {a^{2}}+6 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, a x +4 \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right ) a^{2} x -3 \sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}-2 a \ln \left (\frac {a^{2} x +\sqrt {a^{2}}\, \sqrt {\left (a x -1\right ) \left (a x +1\right )}}{\sqrt {a^{2}}}\right )}{2 a \sqrt {a^{2}}\, \left (a x -1\right ) c \sqrt {\left (a x -1\right ) \left (a x +1\right )}\, \sqrt {\frac {a x -1}{a x +1}}}\) \(250\)

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a^2/x^2),x,method=_RETURNVERBOSE)

[Out]

1/a*(a*x-1)/c/((a*x-1)/(a*x+1))^(1/2)+(1/a^2*ln(a^2*x/(a^2)^(1/2)+(a^2*x^2-1)^(1/2))/(a^2)^(1/2)-1/a^4/(x-1/a)
*((x-1/a)^2*a^2+2*(x-1/a)*a)^(1/2))*a^2/c/((a*x-1)/(a*x+1))^(1/2)*((a*x-1)*(a*x+1))^(1/2)/(a*x+1)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.89 \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\frac {{\left (a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right ) - {\left (a x - 1\right )} \log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right ) + {\left (a^{2} x^{2} - a x - 2\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a^{2} c x - a c} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a^2/x^2),x, algorithm="fricas")

[Out]

((a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - (a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (a^2*x^2 - a*x
- 2)*sqrt((a*x - 1)/(a*x + 1)))/(a^2*c*x - a*c)

Sympy [F]

\[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\frac {a^{2} \int \frac {x^{2}}{a^{2} x^{2} \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}} - \sqrt {\frac {a x}{a x + 1} - \frac {1}{a x + 1}}}\, dx}{c} \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/(c-c/a**2/x**2),x)

[Out]

a**2*Integral(x**2/(a**2*x**2*sqrt(a*x/(a*x + 1) - 1/(a*x + 1)) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1))), x)/c

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.12 \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=-a {\left (\frac {\frac {3 \, {\left (a x - 1\right )}}{a x + 1} - 1}{a^{2} c \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}} - a^{2} c \sqrt {\frac {a x - 1}{a x + 1}}} - \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} + 1\right )}{a^{2} c} + \frac {\log \left (\sqrt {\frac {a x - 1}{a x + 1}} - 1\right )}{a^{2} c}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a^2/x^2),x, algorithm="maxima")

[Out]

-a*((3*(a*x - 1)/(a*x + 1) - 1)/(a^2*c*((a*x - 1)/(a*x + 1))^(3/2) - a^2*c*sqrt((a*x - 1)/(a*x + 1))) - log(sq
rt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c) + log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c))

Giac [F]

\[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\int { \frac {1}{{\left (c - \frac {c}{a^{2} x^{2}}\right )} \sqrt {\frac {a x - 1}{a x + 1}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/(c-c/a^2/x^2),x, algorithm="giac")

[Out]

undef

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.60 \[ \int \frac {e^{\coth ^{-1}(a x)}}{c-\frac {c}{a^2 x^2}} \, dx=\frac {2\,a\,x+4\,\mathrm {atanh}\left (\sqrt {\frac {a\,x-1}{a\,x+1}}\right )\,\sqrt {\frac {a\,x-1}{a\,x+1}}-4}{2\,a\,c\,\sqrt {\frac {a\,x-1}{a\,x+1}}} \]

[In]

int(1/((c - c/(a^2*x^2))*((a*x - 1)/(a*x + 1))^(1/2)),x)

[Out]

(2*a*x + 4*atanh(((a*x - 1)/(a*x + 1))^(1/2))*((a*x - 1)/(a*x + 1))^(1/2) - 4)/(2*a*c*((a*x - 1)/(a*x + 1))^(1
/2))