\(\int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx\) [69]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 14, antiderivative size = 216 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {123 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {123 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4} \]

[Out]

63/64*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x/a^3+15/32*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x^2/a^2+3/8*(1-1/a/x)^(1/4)*
(1+1/a/x)^(3/4)*x^3/a+1/4*(1-1/a/x)^(1/4)*(1+1/a/x)^(3/4)*x^4-123/64*arctan((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a
^4+123/64*arctanh((1+1/a/x)^(1/4)/(1-1/a/x)^(1/4))/a^4

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {6306, 101, 156, 12, 95, 304, 209, 212} \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=-\frac {123 \arctan \left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {123 \text {arctanh}\left (\frac {\sqrt [4]{\frac {1}{a x}+1}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {63 x \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{64 a^3}+\frac {15 x^2 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{32 a^2}+\frac {1}{4} x^4 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}+\frac {3 x^3 \sqrt [4]{1-\frac {1}{a x}} \left (\frac {1}{a x}+1\right )^{3/4}}{8 a} \]

[In]

Int[E^((3*ArcCoth[a*x])/2)*x^3,x]

[Out]

(63*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x)/(64*a^3) + (15*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x^2)/(32
*a^2) + (3*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x^3)/(8*a) + ((1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4)*x^4)/
4 - (123*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4) + (123*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(
a*x))^(1/4)])/(64*a^4)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 6306

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/4}}{x^5 \left (1-\frac {x}{a}\right )^{3/4}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {1}{4} \text {Subst}\left (\int \frac {\frac {9}{2 a}+\frac {3 x}{a^2}}{x^4 \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4+\frac {1}{12} \text {Subst}\left (\int \frac {-\frac {45}{4 a^2}-\frac {9 x}{a^3}}{x^3 \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {1}{24} \text {Subst}\left (\int \frac {\frac {189}{8 a^3}+\frac {45 x}{4 a^4}}{x^2 \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4+\frac {1}{24} \text {Subst}\left (\int -\frac {369}{16 a^4 x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right ) \\ & = \frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {123 \text {Subst}\left (\int \frac {1}{x \left (1-\frac {x}{a}\right )^{3/4} \sqrt [4]{1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{128 a^4} \\ & = \frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {123 \text {Subst}\left (\int \frac {x^2}{-1+x^4} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{32 a^4} \\ & = \frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4+\frac {123 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}-\frac {123 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4} \\ & = \frac {63 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x}{64 a^3}+\frac {15 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^2}{32 a^2}+\frac {3 \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^3}{8 a}+\frac {1}{4} \sqrt [4]{1-\frac {1}{a x}} \left (1+\frac {1}{a x}\right )^{3/4} x^4-\frac {123 \arctan \left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4}+\frac {123 \text {arctanh}\left (\frac {\sqrt [4]{1+\frac {1}{a x}}}{\sqrt [4]{1-\frac {1}{a x}}}\right )}{64 a^4} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.13 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.69 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {\frac {512 e^{\frac {3}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^4}+\frac {1152 e^{\frac {3}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^3}+\frac {1008 e^{\frac {3}{2} \coth ^{-1}(a x)}}{\left (-1+e^{2 \coth ^{-1}(a x)}\right )^2}+\frac {532 e^{\frac {3}{2} \coth ^{-1}(a x)}}{-1+e^{2 \coth ^{-1}(a x)}}-246 \arctan \left (e^{\frac {1}{2} \coth ^{-1}(a x)}\right )-123 \log \left (1-e^{\frac {1}{2} \coth ^{-1}(a x)}\right )+123 \log \left (1+e^{\frac {1}{2} \coth ^{-1}(a x)}\right )}{128 a^4} \]

[In]

Integrate[E^((3*ArcCoth[a*x])/2)*x^3,x]

[Out]

((512*E^((3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^4 + (1152*E^((3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a
*x]))^3 + (1008*E^((3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^2 + (532*E^((3*ArcCoth[a*x])/2))/(-1 + E^(2*
ArcCoth[a*x])) - 246*ArcTan[E^(ArcCoth[a*x]/2)] - 123*Log[1 - E^(ArcCoth[a*x]/2)] + 123*Log[1 + E^(ArcCoth[a*x
]/2)])/(128*a^4)

Maple [F]

\[\int \frac {x^{3}}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{4}}}d x\]

[In]

int(1/((a*x-1)/(a*x+1))^(3/4)*x^3,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(3/4)*x^3,x)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.51 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {2 \, {\left (16 \, a^{4} x^{4} + 40 \, a^{3} x^{3} + 54 \, a^{2} x^{2} + 93 \, a x + 63\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right ) + 123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right ) - 123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{128 \, a^{4}} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^3,x, algorithm="fricas")

[Out]

1/128*(2*(16*a^4*x^4 + 40*a^3*x^3 + 54*a^2*x^2 + 93*a*x + 63)*((a*x - 1)/(a*x + 1))^(1/4) + 246*arctan(((a*x -
 1)/(a*x + 1))^(1/4)) + 123*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) - 123*log(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a
^4

Sympy [F]

\[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\int \frac {x^{3}}{\left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{4}}}\, dx \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/4)*x**3,x)

[Out]

Integral(x**3/((a*x - 1)/(a*x + 1))**(3/4), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.04 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {1}{128} \, a {\left (\frac {4 \, {\left (41 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {13}{4}} - 183 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {9}{4}} + 147 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {5}{4}} - 133 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{\frac {4 \, {\left (a x - 1\right )} a^{5}}{a x + 1} - \frac {6 \, {\left (a x - 1\right )}^{2} a^{5}}{{\left (a x + 1\right )}^{2}} + \frac {4 \, {\left (a x - 1\right )}^{3} a^{5}}{{\left (a x + 1\right )}^{3}} - \frac {{\left (a x - 1\right )}^{4} a^{5}}{{\left (a x + 1\right )}^{4}} - a^{5}} + \frac {246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} + \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} - \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1\right )}{a^{5}}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^3,x, algorithm="maxima")

[Out]

1/128*a*(4*(41*((a*x - 1)/(a*x + 1))^(13/4) - 183*((a*x - 1)/(a*x + 1))^(9/4) + 147*((a*x - 1)/(a*x + 1))^(5/4
) - 133*((a*x - 1)/(a*x + 1))^(1/4))/(4*(a*x - 1)*a^5/(a*x + 1) - 6*(a*x - 1)^2*a^5/(a*x + 1)^2 + 4*(a*x - 1)^
3*a^5/(a*x + 1)^3 - (a*x - 1)^4*a^5/(a*x + 1)^4 - a^5) + 246*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 + 123*log
(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 - 123*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^5)

Giac [A] (verification not implemented)

none

Time = 0.39 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.94 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {1}{128} \, a {\left (\frac {246 \, \arctan \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}{a^{5}} + \frac {123 \, \log \left (\left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} + 1\right )}{a^{5}} - \frac {123 \, \log \left ({\left | \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}} - 1 \right |}\right )}{a^{5}} - \frac {4 \, {\left (\frac {147 \, {\left (a x - 1\right )} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{a x + 1} - \frac {183 \, {\left (a x - 1\right )}^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{{\left (a x + 1\right )}^{2}} + \frac {41 \, {\left (a x - 1\right )}^{3} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}}{{\left (a x + 1\right )}^{3}} - 133 \, \left (\frac {a x - 1}{a x + 1}\right )^{\frac {1}{4}}\right )}}{a^{5} {\left (\frac {a x - 1}{a x + 1} - 1\right )}^{4}}\right )} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)*x^3,x, algorithm="giac")

[Out]

1/128*a*(246*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 + 123*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 - 123*log(
abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^5 - 4*(147*(a*x - 1)*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1) - 183*(a*x
- 1)^2*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^2 + 41*(a*x - 1)^3*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^3 - 133*
((a*x - 1)/(a*x + 1))^(1/4))/(a^5*((a*x - 1)/(a*x + 1) - 1)^4))

Mupad [B] (verification not implemented)

Time = 4.19 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.89 \[ \int e^{\frac {3}{2} \coth ^{-1}(a x)} x^3 \, dx=\frac {\frac {133\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}}{32}-\frac {147\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{5/4}}{32}+\frac {183\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{9/4}}{32}-\frac {41\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{13/4}}{32}}{a^4+\frac {6\,a^4\,{\left (a\,x-1\right )}^2}{{\left (a\,x+1\right )}^2}-\frac {4\,a^4\,{\left (a\,x-1\right )}^3}{{\left (a\,x+1\right )}^3}+\frac {a^4\,{\left (a\,x-1\right )}^4}{{\left (a\,x+1\right )}^4}-\frac {4\,a^4\,\left (a\,x-1\right )}{a\,x+1}}+\frac {123\,\mathrm {atan}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{64\,a^4}+\frac {123\,\mathrm {atanh}\left ({\left (\frac {a\,x-1}{a\,x+1}\right )}^{1/4}\right )}{64\,a^4} \]

[In]

int(x^3/((a*x - 1)/(a*x + 1))^(3/4),x)

[Out]

((133*((a*x - 1)/(a*x + 1))^(1/4))/32 - (147*((a*x - 1)/(a*x + 1))^(5/4))/32 + (183*((a*x - 1)/(a*x + 1))^(9/4
))/32 - (41*((a*x - 1)/(a*x + 1))^(13/4))/32)/(a^4 + (6*a^4*(a*x - 1)^2)/(a*x + 1)^2 - (4*a^4*(a*x - 1)^3)/(a*
x + 1)^3 + (a^4*(a*x - 1)^4)/(a*x + 1)^4 - (4*a^4*(a*x - 1))/(a*x + 1)) + (123*atan(((a*x - 1)/(a*x + 1))^(1/4
)))/(64*a^4) + (123*atanh(((a*x - 1)/(a*x + 1))^(1/4)))/(64*a^4)