\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx\) [899]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 108 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{a \sqrt {1-\frac {1}{a^2 x^2}} x}-\frac {3 \sqrt {c-\frac {c}{a^2 x^2}} \log (x)}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-\frac {c}{a^2 x^2}} \log (1-a x)}{\sqrt {1-\frac {1}{a^2 x^2}}} \]

[Out]

(c-c/a^2/x^2)^(1/2)/a/x/(1-1/a^2/x^2)^(1/2)-3*ln(x)*(c-c/a^2/x^2)^(1/2)/(1-1/a^2/x^2)^(1/2)+4*ln(-a*x+1)*(c-c/
a^2/x^2)^(1/2)/(1-1/a^2/x^2)^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6332, 6328, 90} \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{a x \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {3 \log (x) \sqrt {c-\frac {c}{a^2 x^2}}}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-\frac {c}{a^2 x^2}} \log (1-a x)}{\sqrt {1-\frac {1}{a^2 x^2}}} \]

[In]

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

Sqrt[c - c/(a^2*x^2)]/(a*Sqrt[1 - 1/(a^2*x^2)]*x) - (3*Sqrt[c - c/(a^2*x^2)]*Log[x])/Sqrt[1 - 1/(a^2*x^2)] + (
4*Sqrt[c - c/(a^2*x^2)]*Log[1 - a*x])/Sqrt[1 - 1/(a^2*x^2)]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 6328

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u/x^(
2*p))*(-1 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 6332

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c + d/x^2
)^FracPart[p]/(1 - 1/(a^2*x^2))^FracPart[p]), Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a
, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {c-\frac {c}{a^2 x^2}} \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a^2 x^2}}}{x} \, dx}{\sqrt {1-\frac {1}{a^2 x^2}}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}} \int \frac {(1+a x)^2}{x^2 (-1+a x)} \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}} \int \left (-\frac {1}{x^2}-\frac {3 a}{x}+\frac {4 a^2}{-1+a x}\right ) \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}}}{a \sqrt {1-\frac {1}{a^2 x^2}} x}-\frac {3 \sqrt {c-\frac {c}{a^2 x^2}} \log (x)}{\sqrt {1-\frac {1}{a^2 x^2}}}+\frac {4 \sqrt {c-\frac {c}{a^2 x^2}} \log (1-a x)}{\sqrt {1-\frac {1}{a^2 x^2}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.47 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\frac {\sqrt {c-\frac {c}{a^2 x^2}} \left (\frac {1}{a x}-3 \log (x)+4 \log (1-a x)\right )}{\sqrt {1-\frac {1}{a^2 x^2}}} \]

[In]

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - c/(a^2*x^2)])/x,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(1/(a*x) - 3*Log[x] + 4*Log[1 - a*x]))/Sqrt[1 - 1/(a^2*x^2)]

Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.62

method result size
default \(-\frac {\left (3 a \ln \left (x \right ) x -4 a \ln \left (a x -1\right ) x -1\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \left (a x -1\right )}{\left (a x +1\right )^{2} \left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}}}\) \(67\)

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

-(3*a*ln(x)*x-4*a*ln(a*x-1)*x-1)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)^2/((a*x-1)/(a*x+1))^(3/2)

Fricas [A] (verification not implemented)

none

Time = 0.25 (sec) , antiderivative size = 32, normalized size of antiderivative = 0.30 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\frac {\sqrt {a^{2} c} {\left (4 \, a x \log \left (a x - 1\right ) - 3 \, a x \log \left (x\right ) + 1\right )}}{a^{2} x} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="fricas")

[Out]

sqrt(a^2*c)*(4*a*x*log(a*x - 1) - 3*a*x*log(x) + 1)/(a^2*x)

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\text {Timed out} \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(c-c/a**2/x**2)**(1/2)/x,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\int { \frac {\sqrt {c - \frac {c}{a^{2} x^{2}}}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a^2*x^2))/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> an error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x} \, dx=\int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}}{x\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

[In]

int((c - c/(a^2*x^2))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)),x)

[Out]

int((c - c/(a^2*x^2))^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)