\(\int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx\) [906]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 72 \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=-\frac {\sqrt {c-\frac {c}{a^2 x^2}} x}{a \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x^2}{2 \sqrt {1-\frac {1}{a^2 x^2}}} \]

[Out]

-x*(c-c/a^2/x^2)^(1/2)/a/(1-1/a^2/x^2)^(1/2)+1/2*x^2*(c-c/a^2/x^2)^(1/2)/(1-1/a^2/x^2)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6332, 6328} \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\frac {x^2 \sqrt {c-\frac {c}{a^2 x^2}}}{2 \sqrt {1-\frac {1}{a^2 x^2}}}-\frac {x \sqrt {c-\frac {c}{a^2 x^2}}}{a \sqrt {1-\frac {1}{a^2 x^2}}} \]

[In]

Int[(Sqrt[c - c/(a^2*x^2)]*x)/E^ArcCoth[a*x],x]

[Out]

-((Sqrt[c - c/(a^2*x^2)]*x)/(a*Sqrt[1 - 1/(a^2*x^2)])) + (Sqrt[c - c/(a^2*x^2)]*x^2)/(2*Sqrt[1 - 1/(a^2*x^2)])

Rule 6328

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u/x^(
2*p))*(-1 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 6332

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[c^IntPart[p]*((c + d/x^2
)^FracPart[p]/(1 - 1/(a^2*x^2))^FracPart[p]), Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a
, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {c-\frac {c}{a^2 x^2}} \int e^{-\coth ^{-1}(a x)} \sqrt {1-\frac {1}{a^2 x^2}} x \, dx}{\sqrt {1-\frac {1}{a^2 x^2}}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}} \int (-1+a x) \, dx}{a \sqrt {1-\frac {1}{a^2 x^2}}} \\ & = -\frac {\sqrt {c-\frac {c}{a^2 x^2}} x}{a \sqrt {1-\frac {1}{a^2 x^2}}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} x^2}{2 \sqrt {1-\frac {1}{a^2 x^2}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.61 \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\frac {\sqrt {c-\frac {c}{a^2 x^2}} \left (-\frac {x}{a}+\frac {x^2}{2}\right )}{\sqrt {1-\frac {1}{a^2 x^2}}} \]

[In]

Integrate[(Sqrt[c - c/(a^2*x^2)]*x)/E^ArcCoth[a*x],x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(-(x/a) + x^2/2))/Sqrt[1 - 1/(a^2*x^2)]

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.72

method result size
gosper \(\frac {x^{2} \left (a x -2\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {\frac {a x -1}{a x +1}}}{2 a x -2}\) \(52\)
default \(\frac {x^{2} \left (a x -2\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {\frac {a x -1}{a x +1}}}{2 a x -2}\) \(52\)

[In]

int(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*x^2*(a*x-2)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/(a*x-1)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.29 \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\frac {\sqrt {a^{2} c} {\left (a x^{2} - 2 \, x\right )}}{2 \, a^{2}} \]

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(a^2*c)*(a*x^2 - 2*x)/a^2

Sympy [F(-1)]

Timed out. \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\text {Timed out} \]

[In]

integrate(x*(c-c/a**2/x**2)**(1/2)*((a*x-1)/(a*x+1))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\int { \sqrt {c - \frac {c}{a^{2} x^{2}}} x \sqrt {\frac {a x - 1}{a x + 1}} \,d x } \]

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x*sqrt((a*x - 1)/(a*x + 1)), x)

Giac [F]

\[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\int { \sqrt {c - \frac {c}{a^{2} x^{2}}} x \sqrt {\frac {a x - 1}{a x + 1}} \,d x } \]

[In]

integrate(x*(c-c/a^2/x^2)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x*sqrt((a*x - 1)/(a*x + 1)), x)

Mupad [B] (verification not implemented)

Time = 4.01 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.62 \[ \int e^{-\coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}} x \, dx=\frac {x^2\,\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x-2\right )\,\sqrt {\frac {a\,x-1}{a\,x+1}}}{2\,\left (a\,x-1\right )} \]

[In]

int(x*(c - c/(a^2*x^2))^(1/2)*((a*x - 1)/(a*x + 1))^(1/2),x)

[Out]

(x^2*(c - c/(a^2*x^2))^(1/2)*(a*x - 2)*((a*x - 1)/(a*x + 1))^(1/2))/(2*(a*x - 1))