\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx\) [915]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 112 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=-\frac {3}{2} a \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)}{2 x}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}} x \text {arctanh}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{2 \sqrt {1-a x} \sqrt {1+a x}} \]

[Out]

-3/2*a*(c-c/a^2/x^2)^(1/2)+1/2*(-a*x+1)*(c-c/a^2/x^2)^(1/2)/x+3/2*a^2*x*arctanh((-a*x+1)^(1/2)*(a*x+1)^(1/2))*
(c-c/a^2/x^2)^(1/2)/(-a*x+1)^(1/2)/(a*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6302, 6294, 6264, 96, 94, 214} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=\frac {3 a^2 x \text {arctanh}\left (\sqrt {1-a x} \sqrt {a x+1}\right ) \sqrt {c-\frac {c}{a^2 x^2}}}{2 \sqrt {1-a x} \sqrt {a x+1}}-\frac {3}{2} a \sqrt {c-\frac {c}{a^2 x^2}}+\frac {(1-a x) \sqrt {c-\frac {c}{a^2 x^2}}}{2 x} \]

[In]

Int[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

(-3*a*Sqrt[c - c/(a^2*x^2)])/2 + (Sqrt[c - c/(a^2*x^2)]*(1 - a*x))/(2*x) + (3*a^2*Sqrt[c - c/(a^2*x^2)]*x*ArcT
anh[Sqrt[1 - a*x]*Sqrt[1 + a*x]])/(2*Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 94

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6264

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[u*(1 + d*(x/c))^
p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6294

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[x^(2*p)*((c + d/x^2)^p/((
1 - a*x)^p*(1 + a*x)^p)), Int[(u/x^(2*p))*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d
, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx \\ & = -\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {1-a x} \sqrt {1+a x}}{x^3} \, dx}{\sqrt {1-a x} \sqrt {1+a x}} \\ & = -\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1-a x)^{3/2}}{x^3 \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)}{2 x}+\frac {\left (3 a \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {\sqrt {1-a x}}{x^2 \sqrt {1+a x}} \, dx}{2 \sqrt {1-a x} \sqrt {1+a x}} \\ & = -\frac {3}{2} a \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)}{2 x}-\frac {\left (3 a^2 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{2 \sqrt {1-a x} \sqrt {1+a x}} \\ & = -\frac {3}{2} a \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)}{2 x}+\frac {\left (3 a^3 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \text {Subst}\left (\int \frac {1}{a-a x^2} \, dx,x,\sqrt {1-a x} \sqrt {1+a x}\right )}{2 \sqrt {1-a x} \sqrt {1+a x}} \\ & = -\frac {3}{2} a \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}} (1-a x)}{2 x}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}} x \text {arctanh}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{2 \sqrt {1-a x} \sqrt {1+a x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.70 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=-\frac {\sqrt {c-\frac {c}{a^2 x^2}} \left ((-1+4 a x) \sqrt {-1+a^2 x^2}+3 a^2 x^2 \arctan \left (\frac {1}{\sqrt {-1+a^2 x^2}}\right )\right )}{2 x \sqrt {-1+a^2 x^2}} \]

[In]

Integrate[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

-1/2*(Sqrt[c - c/(a^2*x^2)]*((-1 + 4*a*x)*Sqrt[-1 + a^2*x^2] + 3*a^2*x^2*ArcTan[1/Sqrt[-1 + a^2*x^2]]))/(x*Sqr
t[-1 + a^2*x^2])

Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.28

method result size
risch \(-\frac {\left (4 a^{3} x^{3}-a^{2} x^{2}-4 a x +1\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}}{2 x \left (a^{2} x^{2}-1\right )}-\frac {3 a^{2} \ln \left (\frac {-2 c +2 \sqrt {-c}\, \sqrt {a^{2} c \,x^{2}-c}}{x}\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {c \left (a^{2} x^{2}-1\right )}\, x}{2 \sqrt {-c}\, \left (a^{2} x^{2}-1\right )}\) \(143\)
default \(\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \left (-4 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{3} c \,x^{3}+4 \sqrt {-\frac {c}{a^{2}}}\, {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} a^{3} x +4 \sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (\sqrt {c}\, x +\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\right ) a \,x^{2}-4 \sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (\frac {\sqrt {c}\, \sqrt {\frac {c \left (a x -1\right ) \left (a x +1\right )}{a^{2}}}+c x}{\sqrt {c}}\right ) a \,x^{2}+4 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a x -1\right ) \left (a x +1\right )}{a^{2}}}\, a^{2} c \,x^{2}-3 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2} c \,x^{2}-a^{2} {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}-3 \ln \left (\frac {2 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2}-2 c}{a^{2} x}\right ) c^{2} x^{2}\right )}{2 x \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, c}\) \(348\)

[In]

int((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(4*a^3*x^3-a^2*x^2-4*a*x+1)/x*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/(a^2*x^2-1)-3/2*a^2/(-c)^(1/2)*ln((-2*c+2*(-c
)^(1/2)*(a^2*c*x^2-c)^(1/2))/x)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(c*(a^2*x^2-1))^(1/2)/(a^2*x^2-1)*x

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.57 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=\left [\frac {3 \, a \sqrt {-c} x \log \left (-\frac {a^{2} c x^{2} + 2 \, a \sqrt {-c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - 2 \, c}{x^{2}}\right ) - 2 \, {\left (4 \, a x - 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{4 \, x}, -\frac {3 \, a \sqrt {c} x \arctan \left (\frac {a \sqrt {c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right ) + {\left (4 \, a x - 1\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{2 \, x}\right ] \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="fricas")

[Out]

[1/4*(3*a*sqrt(-c)*x*log(-(a^2*c*x^2 + 2*a*sqrt(-c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - 2*c)/x^2) - 2*(4*a*x -
 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x, -1/2*(3*a*sqrt(c)*x*arctan(a*sqrt(c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2))
/(a^2*c*x^2 - c)) + (4*a*x - 1)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x - 1\right )}{x^{2} \left (a x + 1\right )}\, dx \]

[In]

integrate((c-c/a**2/x**2)**(1/2)*(a*x-1)/(a*x+1)/x**2,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x - 1)/(x**2*(a*x + 1)), x)

Maxima [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=\int { \frac {{\left (a x - 1\right )} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (a x + 1\right )} x^{2}} \,d x } \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="maxima")

[Out]

integrate((a*x - 1)*sqrt(c - c/(a^2*x^2))/((a*x + 1)*x^2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 194 vs. \(2 (91) = 182\).

Time = 0.37 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.73 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx={\left (3 \, \sqrt {c} \arctan \left (-\frac {\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}}{\sqrt {c}}\right ) \mathrm {sgn}\left (x\right ) - \frac {{\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{3} a c \mathrm {sgn}\left (x\right ) + 4 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} c^{\frac {3}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) - {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )} a c^{2} \mathrm {sgn}\left (x\right ) + 4 \, c^{\frac {5}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right )}{{\left ({\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} + c\right )}^{2} a}\right )} {\left | a \right |} \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="giac")

[Out]

(3*sqrt(c)*arctan(-(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))/sqrt(c))*sgn(x) - ((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 -
c))^3*a*c*sgn(x) + 4*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^2*c^(3/2)*abs(a)*sgn(x) - (sqrt(a^2*c)*x - sqrt(a^2
*c*x^2 - c))*a*c^2*sgn(x) + 4*c^(5/2)*abs(a)*sgn(x))/(((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^2 + c)^2*a))*abs(
a)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^2} \, dx=\int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x-1\right )}{x^2\,\left (a\,x+1\right )} \,d x \]

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x^2*(a*x + 1)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x^2*(a*x + 1)), x)