\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx\) [918]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 181 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}-\frac {3 a^5 \sqrt {c-\frac {c}{a^2 x^2}} x \text {arctanh}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{4 \sqrt {1-a x} \sqrt {1+a x}} \]

[Out]

6/5*a^4*(c-c/a^2/x^2)^(1/2)+1/5*(c-c/a^2/x^2)^(1/2)/x^4-1/2*a*(c-c/a^2/x^2)^(1/2)/x^3+3/5*a^2*(c-c/a^2/x^2)^(1
/2)/x^2-3/4*a^3*(c-c/a^2/x^2)^(1/2)/x-3/4*a^5*x*arctanh((-a*x+1)^(1/2)*(a*x+1)^(1/2))*(c-c/a^2/x^2)^(1/2)/(-a*
x+1)^(1/2)/(a*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {6302, 6294, 6264, 100, 156, 12, 94, 214} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}-\frac {3 a^5 x \text {arctanh}\left (\sqrt {1-a x} \sqrt {a x+1}\right ) \sqrt {c-\frac {c}{a^2 x^2}}}{4 \sqrt {1-a x} \sqrt {a x+1}}+\frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x} \]

[In]

Int[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x^5),x]

[Out]

(6*a^4*Sqrt[c - c/(a^2*x^2)])/5 + Sqrt[c - c/(a^2*x^2)]/(5*x^4) - (a*Sqrt[c - c/(a^2*x^2)])/(2*x^3) + (3*a^2*S
qrt[c - c/(a^2*x^2)])/(5*x^2) - (3*a^3*Sqrt[c - c/(a^2*x^2)])/(4*x) - (3*a^5*Sqrt[c - c/(a^2*x^2)]*x*ArcTanh[S
qrt[1 - a*x]*Sqrt[1 + a*x]])/(4*Sqrt[1 - a*x]*Sqrt[1 + a*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 94

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 6264

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[c^p, Int[u*(1 + d*(x/c))^
p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (IntegerQ
[p] || GtQ[c, 0])

Rule 6294

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[x^(2*p)*((c + d/x^2)^p/((
1 - a*x)^p*(1 + a*x)^p)), Int[(u/x^(2*p))*(1 - a*x)^p*(1 + a*x)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d
, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &&  !GtQ[c, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx \\ & = -\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {1-a x} \sqrt {1+a x}}{x^6} \, dx}{\sqrt {1-a x} \sqrt {1+a x}} \\ & = -\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {(1-a x)^{3/2}}{x^6 \sqrt {1+a x}} \, dx}{\sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}+\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {10 a-9 a^2 x}{x^5 \sqrt {1-a x} \sqrt {1+a x}} \, dx}{5 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {36 a^2-30 a^3 x}{x^4 \sqrt {1-a x} \sqrt {1+a x}} \, dx}{20 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}+\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {90 a^3-72 a^4 x}{x^3 \sqrt {1-a x} \sqrt {1+a x}} \, dx}{60 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}-\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {144 a^4-90 a^5 x}{x^2 \sqrt {1-a x} \sqrt {1+a x}} \, dx}{120 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}+\frac {\left (\sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {90 a^5}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{120 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}+\frac {\left (3 a^5 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \int \frac {1}{x \sqrt {1-a x} \sqrt {1+a x}} \, dx}{4 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}-\frac {\left (3 a^6 \sqrt {c-\frac {c}{a^2 x^2}} x\right ) \text {Subst}\left (\int \frac {1}{a-a x^2} \, dx,x,\sqrt {1-a x} \sqrt {1+a x}\right )}{4 \sqrt {1-a x} \sqrt {1+a x}} \\ & = \frac {6}{5} a^4 \sqrt {c-\frac {c}{a^2 x^2}}+\frac {\sqrt {c-\frac {c}{a^2 x^2}}}{5 x^4}-\frac {a \sqrt {c-\frac {c}{a^2 x^2}}}{2 x^3}+\frac {3 a^2 \sqrt {c-\frac {c}{a^2 x^2}}}{5 x^2}-\frac {3 a^3 \sqrt {c-\frac {c}{a^2 x^2}}}{4 x}-\frac {3 a^5 \sqrt {c-\frac {c}{a^2 x^2}} x \text {arctanh}\left (\sqrt {1-a x} \sqrt {1+a x}\right )}{4 \sqrt {1-a x} \sqrt {1+a x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.56 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\frac {\sqrt {c-\frac {c}{a^2 x^2}} \left (\sqrt {-1+a^2 x^2} \left (4-10 a x+12 a^2 x^2-15 a^3 x^3+24 a^4 x^4\right )+15 a^5 x^5 \arctan \left (\frac {1}{\sqrt {-1+a^2 x^2}}\right )\right )}{20 x^4 \sqrt {-1+a^2 x^2}} \]

[In]

Integrate[Sqrt[c - c/(a^2*x^2)]/(E^(2*ArcCoth[a*x])*x^5),x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(Sqrt[-1 + a^2*x^2]*(4 - 10*a*x + 12*a^2*x^2 - 15*a^3*x^3 + 24*a^4*x^4) + 15*a^5*x^5*Ar
cTan[1/Sqrt[-1 + a^2*x^2]]))/(20*x^4*Sqrt[-1 + a^2*x^2])

Maple [A] (verified)

Time = 0.61 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.92

method result size
risch \(\frac {\left (24 a^{6} x^{6}-15 a^{5} x^{5}-12 a^{4} x^{4}+5 a^{3} x^{3}-8 a^{2} x^{2}+10 a x -4\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}}{20 x^{4} \left (a^{2} x^{2}-1\right )}+\frac {3 a^{5} \ln \left (\frac {-2 c +2 \sqrt {-c}\, \sqrt {a^{2} c \,x^{2}-c}}{x}\right ) \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, \sqrt {c \left (a^{2} x^{2}-1\right )}\, x}{4 \sqrt {-c}\, \left (a^{2} x^{2}-1\right )}\) \(167\)
default \(-\frac {\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2} x^{2}}}\, a^{2} \left (-40 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{4} c \,x^{6}+40 \sqrt {-\frac {c}{a^{2}}}\, {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} a^{4} x^{4}+40 \sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (\sqrt {c}\, x +\sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\right ) a^{2} x^{5}-40 \sqrt {-\frac {c}{a^{2}}}\, c^{\frac {3}{2}} \ln \left (\frac {\sqrt {c}\, \sqrt {\frac {c \left (a x -1\right ) \left (a x +1\right )}{a^{2}}}+c x}{\sqrt {c}}\right ) a^{2} x^{5}+40 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a x -1\right ) \left (a x +1\right )}{a^{2}}}\, a^{3} c \,x^{5}-15 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{3} c \,x^{5}-25 \sqrt {-\frac {c}{a^{2}}}\, {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} a^{3} x^{3}-15 \ln \left (\frac {2 \sqrt {-\frac {c}{a^{2}}}\, \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, a^{2}-2 c}{a^{2} x}\right ) a \,c^{2} x^{5}+16 \sqrt {-\frac {c}{a^{2}}}\, {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} a^{2} x^{2}-10 a {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} x \sqrt {-\frac {c}{a^{2}}}+4 {\left (\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}\right )}^{\frac {3}{2}} \sqrt {-\frac {c}{a^{2}}}\right )}{20 x^{4} \sqrt {\frac {c \left (a^{2} x^{2}-1\right )}{a^{2}}}\, c \sqrt {-\frac {c}{a^{2}}}}\) \(447\)

[In]

int((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^5,x,method=_RETURNVERBOSE)

[Out]

1/20*(24*a^6*x^6-15*a^5*x^5-12*a^4*x^4+5*a^3*x^3-8*a^2*x^2+10*a*x-4)/x^4*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/(a^2*x^
2-1)+3/4*a^5/(-c)^(1/2)*ln((-2*c+2*(-c)^(1/2)*(a^2*c*x^2-c)^(1/2))/x)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)*(c*(a^2*x^
2-1))^(1/2)/(a^2*x^2-1)*x

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.28 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\left [\frac {15 \, a^{4} \sqrt {-c} x^{4} \log \left (-\frac {a^{2} c x^{2} - 2 \, a \sqrt {-c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}} - 2 \, c}{x^{2}}\right ) + 2 \, {\left (24 \, a^{4} x^{4} - 15 \, a^{3} x^{3} + 12 \, a^{2} x^{2} - 10 \, a x + 4\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{40 \, x^{4}}, \frac {15 \, a^{4} \sqrt {c} x^{4} \arctan \left (\frac {a \sqrt {c} x \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{a^{2} c x^{2} - c}\right ) + {\left (24 \, a^{4} x^{4} - 15 \, a^{3} x^{3} + 12 \, a^{2} x^{2} - 10 \, a x + 4\right )} \sqrt {\frac {a^{2} c x^{2} - c}{a^{2} x^{2}}}}{20 \, x^{4}}\right ] \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="fricas")

[Out]

[1/40*(15*a^4*sqrt(-c)*x^4*log(-(a^2*c*x^2 - 2*a*sqrt(-c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2)) - 2*c)/x^2) + 2*(2
4*a^4*x^4 - 15*a^3*x^3 + 12*a^2*x^2 - 10*a*x + 4)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x^4, 1/20*(15*a^4*sqrt(c)*x
^4*arctan(a*sqrt(c)*x*sqrt((a^2*c*x^2 - c)/(a^2*x^2))/(a^2*c*x^2 - c)) + (24*a^4*x^4 - 15*a^3*x^3 + 12*a^2*x^2
 - 10*a*x + 4)*sqrt((a^2*c*x^2 - c)/(a^2*x^2)))/x^4]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\int \frac {\sqrt {- c \left (-1 + \frac {1}{a x}\right ) \left (1 + \frac {1}{a x}\right )} \left (a x - 1\right )}{x^{5} \left (a x + 1\right )}\, dx \]

[In]

integrate((c-c/a**2/x**2)**(1/2)*(a*x-1)/(a*x+1)/x**5,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x))*(1 + 1/(a*x)))*(a*x - 1)/(x**5*(a*x + 1)), x)

Maxima [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\int { \frac {{\left (a x - 1\right )} \sqrt {c - \frac {c}{a^{2} x^{2}}}}{{\left (a x + 1\right )} x^{5}} \,d x } \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="maxima")

[Out]

integrate((a*x - 1)*sqrt(c - c/(a^2*x^2))/((a*x + 1)*x^5), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 362 vs. \(2 (149) = 298\).

Time = 2.57 (sec) , antiderivative size = 362, normalized size of antiderivative = 2.00 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=-\frac {1}{10} \, {\left (15 \, a^{3} \sqrt {c} \arctan \left (-\frac {\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}}{\sqrt {c}}\right ) \mathrm {sgn}\left (x\right ) - \frac {15 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{9} a^{3} c \mathrm {sgn}\left (x\right ) + 70 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{7} a^{3} c^{2} \mathrm {sgn}\left (x\right ) + 40 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{6} a^{2} c^{\frac {5}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) + 200 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{4} a^{2} c^{\frac {7}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) - 70 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{3} a^{3} c^{4} \mathrm {sgn}\left (x\right ) + 120 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} a^{2} c^{\frac {9}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right ) - 15 \, {\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )} a^{3} c^{5} \mathrm {sgn}\left (x\right ) + 24 \, a^{2} c^{\frac {11}{2}} {\left | a \right |} \mathrm {sgn}\left (x\right )}{{\left ({\left (\sqrt {a^{2} c} x - \sqrt {a^{2} c x^{2} - c}\right )}^{2} + c\right )}^{5}}\right )} {\left | a \right |} \]

[In]

integrate((c-c/a^2/x^2)^(1/2)*(a*x-1)/(a*x+1)/x^5,x, algorithm="giac")

[Out]

-1/10*(15*a^3*sqrt(c)*arctan(-(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))/sqrt(c))*sgn(x) - (15*(sqrt(a^2*c)*x - sqr
t(a^2*c*x^2 - c))^9*a^3*c*sgn(x) + 70*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^7*a^3*c^2*sgn(x) + 40*(sqrt(a^2*c)
*x - sqrt(a^2*c*x^2 - c))^6*a^2*c^(5/2)*abs(a)*sgn(x) + 200*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^4*a^2*c^(7/2
)*abs(a)*sgn(x) - 70*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^3*a^3*c^4*sgn(x) + 120*(sqrt(a^2*c)*x - sqrt(a^2*c*
x^2 - c))^2*a^2*c^(9/2)*abs(a)*sgn(x) - 15*(sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))*a^3*c^5*sgn(x) + 24*a^2*c^(11
/2)*abs(a)*sgn(x))/((sqrt(a^2*c)*x - sqrt(a^2*c*x^2 - c))^2 + c)^5)*abs(a)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-\frac {c}{a^2 x^2}}}{x^5} \, dx=\int \frac {\sqrt {c-\frac {c}{a^2\,x^2}}\,\left (a\,x-1\right )}{x^5\,\left (a\,x+1\right )} \,d x \]

[In]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x^5*(a*x + 1)),x)

[Out]

int(((c - c/(a^2*x^2))^(1/2)*(a*x - 1))/(x^5*(a*x + 1)), x)