\(\int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx\) [69]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 115 \[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=-\frac {b e^c}{6 \sqrt {\pi } x^3}-\frac {b^3 e^c}{2 \sqrt {\pi } x}-\frac {e^{c+b^2 x^2} \text {erf}(b x)}{4 x^4}-\frac {b^2 e^{c+b^2 x^2} \text {erf}(b x)}{4 x^2}+\frac {b^5 e^c x \, _2F_2\left (\frac {1}{2},1;\frac {3}{2},\frac {3}{2};b^2 x^2\right )}{\sqrt {\pi }} \]

[Out]

-1/4*exp(b^2*x^2+c)*erf(b*x)/x^4-1/4*b^2*exp(b^2*x^2+c)*erf(b*x)/x^2-1/6*b*exp(c)/x^3/Pi^(1/2)-1/2*b^3*exp(c)/
x/Pi^(1/2)+b^5*exp(c)*x*hypergeom([1/2, 1],[3/2, 3/2],b^2*x^2)/Pi^(1/2)

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {6526, 6523, 12, 30} \[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\frac {b^5 e^c x \, _2F_2\left (\frac {1}{2},1;\frac {3}{2},\frac {3}{2};b^2 x^2\right )}{\sqrt {\pi }}-\frac {b^3 e^c}{2 \sqrt {\pi } x}-\frac {b^2 e^{b^2 x^2+c} \text {erf}(b x)}{4 x^2}-\frac {e^{b^2 x^2+c} \text {erf}(b x)}{4 x^4}-\frac {b e^c}{6 \sqrt {\pi } x^3} \]

[In]

Int[(E^(c + b^2*x^2)*Erf[b*x])/x^5,x]

[Out]

-1/6*(b*E^c)/(Sqrt[Pi]*x^3) - (b^3*E^c)/(2*Sqrt[Pi]*x) - (E^(c + b^2*x^2)*Erf[b*x])/(4*x^4) - (b^2*E^(c + b^2*
x^2)*Erf[b*x])/(4*x^2) + (b^5*E^c*x*HypergeometricPFQ[{1/2, 1}, {3/2, 3/2}, b^2*x^2])/Sqrt[Pi]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6523

Int[(E^((c_.) + (d_.)*(x_)^2)*Erf[(b_.)*(x_)])/(x_), x_Symbol] :> Simp[2*b*E^c*(x/Sqrt[Pi])*HypergeometricPFQ[
{1/2, 1}, {3/2, 3/2}, b^2*x^2], x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2]

Rule 6526

Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*E^(c + d*x^2)*(Erf
[a + b*x]/(m + 1)), x] + (-Dist[2*(d/(m + 1)), Int[x^(m + 2)*E^(c + d*x^2)*Erf[a + b*x], x], x] - Dist[2*(b/((
m + 1)*Sqrt[Pi])), Int[x^(m + 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] &&
ILtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {e^{c+b^2 x^2} \text {erf}(b x)}{4 x^4}+\frac {1}{2} b^2 \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^3} \, dx+\frac {b \int \frac {e^c}{x^4} \, dx}{2 \sqrt {\pi }} \\ & = -\frac {e^{c+b^2 x^2} \text {erf}(b x)}{4 x^4}-\frac {b^2 e^{c+b^2 x^2} \text {erf}(b x)}{4 x^2}+\frac {1}{2} b^4 \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x} \, dx+\frac {b^3 \int \frac {e^c}{x^2} \, dx}{2 \sqrt {\pi }}+\frac {\left (b e^c\right ) \int \frac {1}{x^4} \, dx}{2 \sqrt {\pi }} \\ & = -\frac {b e^c}{6 \sqrt {\pi } x^3}-\frac {e^{c+b^2 x^2} \text {erf}(b x)}{4 x^4}-\frac {b^2 e^{c+b^2 x^2} \text {erf}(b x)}{4 x^2}+\frac {b^5 e^c x \, _2F_2\left (\frac {1}{2},1;\frac {3}{2},\frac {3}{2};b^2 x^2\right )}{\sqrt {\pi }}+\frac {\left (b^3 e^c\right ) \int \frac {1}{x^2} \, dx}{2 \sqrt {\pi }} \\ & = -\frac {b e^c}{6 \sqrt {\pi } x^3}-\frac {b^3 e^c}{2 \sqrt {\pi } x}-\frac {e^{c+b^2 x^2} \text {erf}(b x)}{4 x^4}-\frac {b^2 e^{c+b^2 x^2} \text {erf}(b x)}{4 x^2}+\frac {b^5 e^c x \, _2F_2\left (\frac {1}{2},1;\frac {3}{2},\frac {3}{2};b^2 x^2\right )}{\sqrt {\pi }} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.31 \[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=-\frac {2 b e^c \, _2F_2\left (-\frac {3}{2},1;-\frac {1}{2},\frac {3}{2};b^2 x^2\right )}{3 \sqrt {\pi } x^3} \]

[In]

Integrate[(E^(c + b^2*x^2)*Erf[b*x])/x^5,x]

[Out]

(-2*b*E^c*HypergeometricPFQ[{-3/2, 1}, {-1/2, 3/2}, b^2*x^2])/(3*Sqrt[Pi]*x^3)

Maple [F]

\[\int \frac {{\mathrm e}^{b^{2} x^{2}+c} \operatorname {erf}\left (b x \right )}{x^{5}}d x\]

[In]

int(exp(b^2*x^2+c)*erf(b*x)/x^5,x)

[Out]

int(exp(b^2*x^2+c)*erf(b*x)/x^5,x)

Fricas [F]

\[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\int { \frac {\operatorname {erf}\left (b x\right ) e^{\left (b^{2} x^{2} + c\right )}}{x^{5}} \,d x } \]

[In]

integrate(exp(b^2*x^2+c)*erf(b*x)/x^5,x, algorithm="fricas")

[Out]

integral(erf(b*x)*e^(b^2*x^2 + c)/x^5, x)

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\text {Timed out} \]

[In]

integrate(exp(b**2*x**2+c)*erf(b*x)/x**5,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\int { \frac {\operatorname {erf}\left (b x\right ) e^{\left (b^{2} x^{2} + c\right )}}{x^{5}} \,d x } \]

[In]

integrate(exp(b^2*x^2+c)*erf(b*x)/x^5,x, algorithm="maxima")

[Out]

integrate(erf(b*x)*e^(b^2*x^2 + c)/x^5, x)

Giac [F]

\[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\int { \frac {\operatorname {erf}\left (b x\right ) e^{\left (b^{2} x^{2} + c\right )}}{x^{5}} \,d x } \]

[In]

integrate(exp(b^2*x^2+c)*erf(b*x)/x^5,x, algorithm="giac")

[Out]

integrate(erf(b*x)*e^(b^2*x^2 + c)/x^5, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{c+b^2 x^2} \text {erf}(b x)}{x^5} \, dx=\int \frac {{\mathrm {e}}^{b^2\,x^2+c}\,\mathrm {erf}\left (b\,x\right )}{x^5} \,d x \]

[In]

int((exp(c + b^2*x^2)*erf(b*x))/x^5,x)

[Out]

int((exp(c + b^2*x^2)*erf(b*x))/x^5, x)