\(\int x^4 \operatorname {FresnelS}(b x) \, dx\) [4]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 8, antiderivative size = 84 \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=-\frac {8 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^5 \pi ^3}+\frac {x^4 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b \pi }+\frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {4 x^2 \sin \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^3 \pi ^2} \]

[Out]

-8/5*cos(1/2*b^2*Pi*x^2)/b^5/Pi^3+1/5*x^4*cos(1/2*b^2*Pi*x^2)/b/Pi+1/5*x^5*FresnelS(b*x)-4/5*x^2*sin(1/2*b^2*P
i*x^2)/b^3/Pi^2

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {6561, 3460, 3377, 2718} \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\frac {x^4 \cos \left (\frac {1}{2} \pi b^2 x^2\right )}{5 \pi b}-\frac {8 \cos \left (\frac {1}{2} \pi b^2 x^2\right )}{5 \pi ^3 b^5}-\frac {4 x^2 \sin \left (\frac {1}{2} \pi b^2 x^2\right )}{5 \pi ^2 b^3}+\frac {1}{5} x^5 \operatorname {FresnelS}(b x) \]

[In]

Int[x^4*FresnelS[b*x],x]

[Out]

(-8*Cos[(b^2*Pi*x^2)/2])/(5*b^5*Pi^3) + (x^4*Cos[(b^2*Pi*x^2)/2])/(5*b*Pi) + (x^5*FresnelS[b*x])/5 - (4*x^2*Si
n[(b^2*Pi*x^2)/2])/(5*b^3*Pi^2)

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3377

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Cos[e + f*x]/f), x]
+ Dist[d*(m/f), Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3460

Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Sin[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Simpl
ify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))

Rule 6561

Int[FresnelS[(b_.)*(x_)]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(FresnelS[b*x]/(d*(m + 1))), x] -
 Dist[b/(d*(m + 1)), Int[(d*x)^(m + 1)*Sin[(Pi/2)*b^2*x^2], x], x] /; FreeQ[{b, d, m}, x] && NeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {1}{5} b \int x^5 \sin \left (\frac {1}{2} b^2 \pi x^2\right ) \, dx \\ & = \frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {1}{10} b \text {Subst}\left (\int x^2 \sin \left (\frac {1}{2} b^2 \pi x\right ) \, dx,x,x^2\right ) \\ & = \frac {x^4 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b \pi }+\frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {2 \text {Subst}\left (\int x \cos \left (\frac {1}{2} b^2 \pi x\right ) \, dx,x,x^2\right )}{5 b \pi } \\ & = \frac {x^4 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b \pi }+\frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {4 x^2 \sin \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^3 \pi ^2}+\frac {4 \text {Subst}\left (\int \sin \left (\frac {1}{2} b^2 \pi x\right ) \, dx,x,x^2\right )}{5 b^3 \pi ^2} \\ & = -\frac {8 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^5 \pi ^3}+\frac {x^4 \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b \pi }+\frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {4 x^2 \sin \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^3 \pi ^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.85 \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\frac {\left (-8+b^4 \pi ^2 x^4\right ) \cos \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^5 \pi ^3}+\frac {1}{5} x^5 \operatorname {FresnelS}(b x)-\frac {4 x^2 \sin \left (\frac {1}{2} b^2 \pi x^2\right )}{5 b^3 \pi ^2} \]

[In]

Integrate[x^4*FresnelS[b*x],x]

[Out]

((-8 + b^4*Pi^2*x^4)*Cos[(b^2*Pi*x^2)/2])/(5*b^5*Pi^3) + (x^5*FresnelS[b*x])/5 - (4*x^2*Sin[(b^2*Pi*x^2)/2])/(
5*b^3*Pi^2)

Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.46 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.35

method result size
meijerg \(\frac {\pi \,b^{3} x^{8} \operatorname {hypergeom}\left (\left [\frac {3}{4}, 2\right ], \left [\frac {3}{2}, \frac {7}{4}, 3\right ], -\frac {x^{4} \pi ^{2} b^{4}}{16}\right )}{48}\) \(29\)
derivativedivides \(\frac {\frac {\operatorname {FresnelS}\left (b x \right ) b^{5} x^{5}}{5}+\frac {b^{4} x^{4} \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{5 \pi }-\frac {4 \left (\frac {b^{2} x^{2} \sin \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{\pi }+\frac {2 \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{\pi ^{2}}\right )}{5 \pi }}{b^{5}}\) \(80\)
default \(\frac {\frac {\operatorname {FresnelS}\left (b x \right ) b^{5} x^{5}}{5}+\frac {b^{4} x^{4} \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{5 \pi }-\frac {4 \left (\frac {b^{2} x^{2} \sin \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{\pi }+\frac {2 \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{\pi ^{2}}\right )}{5 \pi }}{b^{5}}\) \(80\)
parts \(\frac {x^{5} \operatorname {FresnelS}\left (b x \right )}{5}-\frac {b \left (-\frac {x^{4} \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{b^{2} \pi }+\frac {\frac {4 x^{2} \sin \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{b^{2} \pi }+\frac {8 \cos \left (\frac {b^{2} \pi \,x^{2}}{2}\right )}{b^{4} \pi ^{2}}}{b^{2} \pi }\right )}{5}\) \(83\)

[In]

int(x^4*FresnelS(b*x),x,method=_RETURNVERBOSE)

[Out]

1/48*Pi*b^3*x^8*hypergeom([3/4,2],[3/2,7/4,3],-1/16*x^4*Pi^2*b^4)

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.77 \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\frac {\pi ^{3} b^{5} x^{5} \operatorname {S}\left (b x\right ) - 4 \, \pi b^{2} x^{2} \sin \left (\frac {1}{2} \, \pi b^{2} x^{2}\right ) + {\left (\pi ^{2} b^{4} x^{4} - 8\right )} \cos \left (\frac {1}{2} \, \pi b^{2} x^{2}\right )}{5 \, \pi ^{3} b^{5}} \]

[In]

integrate(x^4*fresnel_sin(b*x),x, algorithm="fricas")

[Out]

1/5*(pi^3*b^5*x^5*fresnel_sin(b*x) - 4*pi*b^2*x^2*sin(1/2*pi*b^2*x^2) + (pi^2*b^4*x^4 - 8)*cos(1/2*pi*b^2*x^2)
)/(pi^3*b^5)

Sympy [A] (verification not implemented)

Time = 1.07 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.44 \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\frac {3 x^{5} S\left (b x\right ) \Gamma \left (\frac {3}{4}\right )}{20 \Gamma \left (\frac {7}{4}\right )} + \frac {3 x^{4} \cos {\left (\frac {\pi b^{2} x^{2}}{2} \right )} \Gamma \left (\frac {3}{4}\right )}{20 \pi b \Gamma \left (\frac {7}{4}\right )} - \frac {3 x^{2} \sin {\left (\frac {\pi b^{2} x^{2}}{2} \right )} \Gamma \left (\frac {3}{4}\right )}{5 \pi ^{2} b^{3} \Gamma \left (\frac {7}{4}\right )} - \frac {6 \cos {\left (\frac {\pi b^{2} x^{2}}{2} \right )} \Gamma \left (\frac {3}{4}\right )}{5 \pi ^{3} b^{5} \Gamma \left (\frac {7}{4}\right )} \]

[In]

integrate(x**4*fresnels(b*x),x)

[Out]

3*x**5*fresnels(b*x)*gamma(3/4)/(20*gamma(7/4)) + 3*x**4*cos(pi*b**2*x**2/2)*gamma(3/4)/(20*pi*b*gamma(7/4)) -
 3*x**2*sin(pi*b**2*x**2/2)*gamma(3/4)/(5*pi**2*b**3*gamma(7/4)) - 6*cos(pi*b**2*x**2/2)*gamma(3/4)/(5*pi**3*b
**5*gamma(7/4))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.74 \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\frac {1}{5} \, x^{5} \operatorname {S}\left (b x\right ) - \frac {4 \, \pi b^{2} x^{2} \sin \left (\frac {1}{2} \, \pi b^{2} x^{2}\right ) - {\left (\pi ^{2} b^{4} x^{4} - 8\right )} \cos \left (\frac {1}{2} \, \pi b^{2} x^{2}\right )}{5 \, \pi ^{3} b^{5}} \]

[In]

integrate(x^4*fresnel_sin(b*x),x, algorithm="maxima")

[Out]

1/5*x^5*fresnel_sin(b*x) - 1/5*(4*pi*b^2*x^2*sin(1/2*pi*b^2*x^2) - (pi^2*b^4*x^4 - 8)*cos(1/2*pi*b^2*x^2))/(pi
^3*b^5)

Giac [F]

\[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\int { x^{4} \operatorname {S}\left (b x\right ) \,d x } \]

[In]

integrate(x^4*fresnel_sin(b*x),x, algorithm="giac")

[Out]

integrate(x^4*fresnel_sin(b*x), x)

Mupad [F(-1)]

Timed out. \[ \int x^4 \operatorname {FresnelS}(b x) \, dx=\int x^4\,\mathrm {FresnelS}\left (b\,x\right ) \,d x \]

[In]

int(x^4*FresnelS(b*x),x)

[Out]

int(x^4*FresnelS(b*x), x)