\(\int \sinh (b x) \text {Shi}(b x) \, dx\) [42]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 9, antiderivative size = 25 \[ \int \sinh (b x) \text {Shi}(b x) \, dx=\frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\text {Shi}(2 b x)}{2 b} \]

[Out]

cosh(b*x)*Shi(b*x)/b-1/2*Shi(2*b*x)/b

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {6675, 12, 5556, 3379} \[ \int \sinh (b x) \text {Shi}(b x) \, dx=\frac {\text {Shi}(b x) \cosh (b x)}{b}-\frac {\text {Shi}(2 b x)}{2 b} \]

[In]

Int[Sinh[b*x]*SinhIntegral[b*x],x]

[Out]

(Cosh[b*x]*SinhIntegral[b*x])/b - SinhIntegral[2*b*x]/(2*b)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 5556

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 6675

Int[Sinh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cosh[a + b*x]*(SinhIntegral[c
 + d*x]/b), x] - Dist[d/b, Int[Cosh[a + b*x]*(Sinh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\cosh (b x) \text {Shi}(b x)}{b}-\int \frac {\cosh (b x) \sinh (b x)}{b x} \, dx \\ & = \frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\int \frac {\cosh (b x) \sinh (b x)}{x} \, dx}{b} \\ & = \frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\int \frac {\sinh (2 b x)}{2 x} \, dx}{b} \\ & = \frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\int \frac {\sinh (2 b x)}{x} \, dx}{2 b} \\ & = \frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\text {Shi}(2 b x)}{2 b} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.00 \[ \int \sinh (b x) \text {Shi}(b x) \, dx=\frac {\cosh (b x) \text {Shi}(b x)}{b}-\frac {\text {Shi}(2 b x)}{2 b} \]

[In]

Integrate[Sinh[b*x]*SinhIntegral[b*x],x]

[Out]

(Cosh[b*x]*SinhIntegral[b*x])/b - SinhIntegral[2*b*x]/(2*b)

Maple [A] (verified)

Time = 0.37 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.88

method result size
derivativedivides \(\frac {\cosh \left (b x \right ) \operatorname {Shi}\left (b x \right )-\frac {\operatorname {Shi}\left (2 b x \right )}{2}}{b}\) \(22\)
default \(\frac {\cosh \left (b x \right ) \operatorname {Shi}\left (b x \right )-\frac {\operatorname {Shi}\left (2 b x \right )}{2}}{b}\) \(22\)

[In]

int(Shi(b*x)*sinh(b*x),x,method=_RETURNVERBOSE)

[Out]

1/b*(cosh(b*x)*Shi(b*x)-1/2*Shi(2*b*x))

Fricas [F]

\[ \int \sinh (b x) \text {Shi}(b x) \, dx=\int { {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \]

[In]

integrate(Shi(b*x)*sinh(b*x),x, algorithm="fricas")

[Out]

integral(sinh(b*x)*sinh_integral(b*x), x)

Sympy [F]

\[ \int \sinh (b x) \text {Shi}(b x) \, dx=\int \sinh {\left (b x \right )} \operatorname {Shi}{\left (b x \right )}\, dx \]

[In]

integrate(Shi(b*x)*sinh(b*x),x)

[Out]

Integral(sinh(b*x)*Shi(b*x), x)

Maxima [F]

\[ \int \sinh (b x) \text {Shi}(b x) \, dx=\int { {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \]

[In]

integrate(Shi(b*x)*sinh(b*x),x, algorithm="maxima")

[Out]

integrate(Shi(b*x)*sinh(b*x), x)

Giac [F]

\[ \int \sinh (b x) \text {Shi}(b x) \, dx=\int { {\rm Shi}\left (b x\right ) \sinh \left (b x\right ) \,d x } \]

[In]

integrate(Shi(b*x)*sinh(b*x),x, algorithm="giac")

[Out]

integrate(Shi(b*x)*sinh(b*x), x)

Mupad [F(-1)]

Timed out. \[ \int \sinh (b x) \text {Shi}(b x) \, dx=\int \mathrm {sinhint}\left (b\,x\right )\,\mathrm {sinh}\left (b\,x\right ) \,d x \]

[In]

int(sinhint(b*x)*sinh(b*x),x)

[Out]

int(sinhint(b*x)*sinh(b*x), x)