Chapter 1
Introduction

1.1 Listing of CAS systems tested
1.2 Results
1.3 Time and leaf size Performance
1.4 Performance based on number of rules Rubi used
1.5 Performance based on number of steps Rubi used
1.6 Solved integrals histogram based on leaf size of result
1.7 Solved integrals histogram based on CPU time used
1.8 Leaf size vs. CPU time used
1.9 Performance per integrand type
1.10 Maximum leaf size ratio for each CAS against the optimal result
1.11 Pass/Fail per test file for each CAS system
1.12 Timing
1.13 Verification
1.14 Important notes about some of the results
1.15 Design of the test system

This report gives the result of running the computer algebra independent integration problems.

The listing of the problems used by this report are

  1. MIT_bee_integration_problems.zip
  2. handbook_integration_problems.zip
  3. CAS_integration_tests_2023_Mathematica_format.m
  4. CAS_integration_tests_2023_Maple_and_Mupad_format.zip
  5. CAS_integration_tests_2023_SAGE_format.zip
  6. CAS_integration_tests_2023_Sympy_format.zip

The Mathematica/Rubi format file above can be read into Mathematica using the following commands

SetDirectory[NotebookDirectory[]] (*where the above .m file was save*) 
lst=First@ReadList["CAS_integration_tests_2023_Mathematica_format.m",Expression]; 
Length[lst]
 

lst[[1]] will be the first integrand,var and lst[[2]] will be the second one and so on.

The Rubi test suite files were downloaded from rulebasedintegration.org.

The current number of problems in this test suite is [85978].

1.1 Listing of CAS systems tested

The following are the CAS systems tested:

  1. Mathematica 13.3.1 (August 16, 2023) on windows 10.
  2. Rubi 4.17.3 (Sept 25, 2023) on Mathematica 13.3.1 on windows 10
  3. Maple 2023.1 (July, 12, 2023) on windows 10.
  4. Maxima 5.47 (June 1, 2023) using Lisp SBCL 2.3.0 on Linux via sagemath 10.1 (Aug 20, 2023).
  5. FriCAS 1.3.9 (July 8, 2023) based on sbcl 2.3.0 on Linux via sagemath 10.1 (Aug 20, 2023).
  6. Giac/Xcas 1.9.0-57 (June 26, 2023) on Linux via sagemath 10.1 (Aug 20, 2023).
  7. Sympy 1.12 (May 10, 2023) Using Python 3.11.3 on Linux.
  8. Mupad using Matlab 2021a with Symbolic Math Toolbox Version 8.7 on windows 10.

Maxima and Fricas and Giac are called using Sagemath. This was done using Sagemath integrate command by changing the name of the algorithm to use the different CAS systems.

Sympy was run directly in Python not via sagemath.

1.2 Results

Important note: A number of problems in this test suite have no antiderivative in closed form. This means the antiderivative of these integrals can not be expressed in terms of elementary, special functions or Hypergeometric2F1 functions.

If a CAS returns the above integral unevaluated within the time limit, then the result is counted as passed and assigned an A grade.

However, if CAS times out, then it is assigned an F grade even if the integral is not integrable, as this implies CAS could not determine that the integral is not integrable in the time limit.

If a CAS returns an antiderivative to such an integral, it is assigned an A grade automatically and this special result is listed in the introduction section of each individual test report to make it easy to identify as this can be important result to investigate.

The results given in in the table below reflects the above.

Table 1.1: Percentage solved for each CAS
System solved Failed
Mathematica % 98.229 ( 84455 ) % 1.771 ( 1523 )
Rubi % 93.746 ( 80601 ) % 6.254 ( 5377 )
Maple % 86.612 ( 74467 ) % 13.388 ( 11511 )
Fricas % 80.894 ( 69551 ) % 19.106 ( 16427 )
Giac % 59.023 ( 50747 ) % 40.977 ( 35231 )
Maxima % 57.273 ( 49242 ) % 42.727 ( 36736 )
Mupad % 57.081 ( 49077 ) % 42.919 ( 36901 )
Sympy % 43.556 ( 37449 ) % 56.444 ( 48529 )

The table below gives additional break down of the grading of quality of the antiderivatives generated by each CAS. The grading is given using the letters A,B,C and F with A being the best quality. The grading is accomplished by comparing the antiderivative generated with the optimal antiderivatives included in the test suite. The following table describes the meaning of these grades.

Table 1.2: Description of grading applied to integration result

grade

description

A

Integral was solved and antiderivative is optimal in quality and leaf size.

B

Integral was solved and antiderivative is optimal in quality but leaf size is larger than twice the optimal antiderivatives leaf size.

C

Integral was solved and antiderivative is non-optimal in quality. This can be due to one or more of the following reasons

  1. antiderivative contains a hypergeometric function and the optimal antiderivative does not.
  2. antiderivative contains a special function and the optimal antiderivative does not.
  3. antiderivative contains the imaginary unit and the optimal antiderivative does not.

F

Integral was not solved. Either the integral was returned unevaluated within the time limit, or it timed out, or CAS hanged or crashed or an exception was raised.

Grading is implemented for all CAS systems in this version except for CAS Mupad where a grade of B is automatically assigned as a place holder for all integrals it completes on time.

The following table summarizes the grading results.

Table 1.3: Antiderivative Grade distribution for each CAS
System % A grade % B grade % C grade % F grade
Rubi 85.37 2.14 2.09 6.25
Mathematica 75.34 5.81 13.07 1.77
Maple 60.51 13.7 7.49 13.39
Fricas 49.95 18.99 8.45 19.11
Maxima 39.7 11.7 1.69 42.73
Giac 38.62 15.07 1.07 40.98
Sympy 25.87 10.24 3.46 56.44
Mupad N/A 52.15 0. 42.92

The following Bar chart is an illustration of the data in the above table.

pict

The figure below compares the CAS systems for each grade level.

pict

1.3 Time and leaf size Performance

The table below summarizes the performance of each CAS system in terms of time used and leaf size of results.

Mean size is the average leaf size produced by the CAS (before any normalization). The Normalized mean is relative to the mean size of the optimal anti-derivative given in the input files.

For example, if CAS has Normalized mean of \(3\), then the mean size of its leaf size is 3 times as large as the mean size of the optimal leaf size.

Median size is value of leaf size where half the values are larger than this and half are smaller (before any normalization). i.e. The Middle value.

Similarly the Normalized median is relative to the median leaf size of the optimal.

For example, if a CAS has Normalized median of \(1.2\), then its median is \(1.2\) as large as the median leaf size of the optimal.

Table 1.4: Time and leaf size performance for each CAS
System Mean time (sec) Mean size Normalized mean Median size Normalized median
Maxima 0.44 587.31 4.65 65. 1.08
Rubi 0.56 151.83 1.2 98. 1.
Fricas 1.18 1161.37 6.29 99. 1.34
Giac 2.03 632.64 4.85 70. 1.14
Mathematica 2.31 311.02 2. 80. 0.99
Sympy 5.36 373.46 4.35 44. 1.1
Maple 5.73 64590.5 753.3 80. 1.
Mupad 6.82 664.71 4.14 63 1.04

1.4 Performance based on number of rules Rubi used

This section shows how each CAS performed based on the number of rules Rubi needed to solve the same integral. One diagram is given for each CAS.

On the \(y\) axis is the percentage solved which Rubi itself needed the number of rules given the \(x\) axis. These plots show that as more rules are needed then most CAS system percentage of solving decreases which indicates the integral is becoming more complicated to solve.

1.5 Performance based on number of steps Rubi used

This section shows how each CAS performed based on the number of steps Rubi needed to solve the same integral. Note that the number of steps Rubi needed can be much higher than the number of rules, as the same rule could be used more than once.

The above diagram show that the precentage of solved intergals decreases for most CAS systems as the number of steps increases. As expected, for integrals that required less steps by Rubi, CAS systems had more success which indicates the integral was not as hard to solve. As Rubi needed more steps to solve the integral, the solved percentage decreased for most CAS systems which indicates the integral is becoming harder to solve.

1.6 Solved integrals histogram based on leaf size of result

The following shows the distribution of solved integrals for each CAS system based on leaf size of the antiderivatives produced by each CAS. It shows that most integrals solved produced leaf size less than about 100 to 150. The bin size used is \(40\).

1.7 Solved integrals histogram based on CPU time used

The following shows the distribution of solved integrals for each CAS system based on CPU time used in seconds. The bin size used is \(0.1\) second.

1.8 Leaf size vs. CPU time used

The following gives the relation between the CPU time used to solve an integral and the leaf size of the antiderivative.

The result for Fricas, Maxima and Giac is shifted more to the right than the other CAS system due to the use of sagemath to call them, which causes an initial slight delay in the timing to start the integration due to overhead of starting a new process each time.

1.9 Performance per integrand type

The following are the different integrand types the test suite contains.

  1. Independent tests.
  2. Algebraic Binomial problems (products involving powers of binomials and monomials).
  3. Algebraic Trinomial problems (products involving powers of trinomials, binomials and monomials).
  4. Miscellaneous Algebraic functions.
  5. Exponentials.
  6. Logarithms.
  7. Trigonometric.
  8. Inverse Trigonometric.
  9. Hyperbolic functions.
  10. Inverse Hyperbolic functions.
  11. Special functions.
  12. Sam Blake input file.
  13. Waldek Hebisch input file.
  14. MIT Bee integration.
  15. Few problems from Ryzhik and Gradshteyn table of integrals handbook.

The following table gives percentage solved of each CAS per integrand type.

Table 1.5: Percentage solved per integrand type
Integrand type problems Rubi Mathematica Maple Maxima Fricas Sympy Giac Mupad
Independent tests 1892 98.78 99.21 94.24 82.14 95.51 75.74 86.73 82.03
Algebraic Binomial 14276 99.96 99.8 85.41 60.16 82.4 63.43 65.63 60.65
Algebraic Trinomial 10187 99.7 99.36 90.4 51.7 87.47 42.51 72.99 56.66
Algebraic Miscellaneous 1519 99.41 98.95 87.76 50.49 85.19 49.9 62.21 61.88
Exponentials 961 99.27 97.29 82.52 66.7 90.84 47.97 49.84 71.49
Logarithms 3085 99.77 97.34 66.52 53.97 58.12 35.43 47.23 43.18
Trigonometric 22551 99.51 97.88 85.98 48.32 79.52 16.36 46.65 49.38
Inverse Trigonometric 4585 99.5 98.28 83.99 35.66 50.36 37.4 43.1 38.43
Hyperbolic 5166 98.72 98.84 83.1 62.04 91.17 24.56 62.45 54.72
Inverse Hyperbolic 6626 99.53 98.43 81.09 46.54 63.57 26.32 36.88 39.6
Special functions 999 98.7 95.6 71.67 47.85 71.27 46.75 31.23 40.14
Sam Blake file 3154 63.35 94.23 83.51 40.27 73.72 35.67 41.38 47.59
Waldek Hebisch file 10335 62.54 96.75 99.22 93.2 99.76 94.75 87.74 90.1
MIT Bee integration 321 94.7 99.38 95.33 92.52 96.26 82.55 91.9 90.03
Table of integrals 163 100. 100. 97.55 92.64 100. 90.8 100. 92.64

In addition to the above table, for each type of integrand listed above, 3D chart is made which shows how each CAS performed on that specific integrand type.

These charts and the table above can be used to show where each CAS relative strength or weakness in the area of integration.

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

pict

1.10 Maximum leaf size ratio for each CAS against the optimal result

The following table gives the largest ratio found in each test file, between each CAS antiderivative and the optimal antiderivative.

For each test input file, the problem with the largest ratio \(\frac {\text {CAS leaf size}}{\text {Optimal leaf size}}\) is recorded with the corresponding problem number.

In each column in the table below, the first number is the maximum leaf size ratio, and the number that follows inside the parentheses is the problem number in that specific file where this maximum ratio was found. This ratio is determined only when CAS solved the the problem and also when an optimal antiderivative is known.

If it happens that a CAS was not able to solve all the integrals in the input test file, or if it was not possible to obtain leaf size for the CAS result for all the problems in the file, then a zero is used for the ratio and -1 is used for the problem number.

This makes it easier to locate the problem. In the future, a direct link will be added as well.

#

Rubi

Mathematica

Maple

Maxima

FriCAS

Sympy

Giac

Mupad

1

1.8 (133)

3.9 (50)

4.5 (170)

3.8 (169)

4. (45)

4789.3 (145)

4.2 (164)

0. (-1)

2

1.9 (26)

5. (26)

3.6 (17)

113.1 (21)

14.3 (13)

16.8 (5)

4.6 (2)

0. (-1)

3

1.1 (4)

2. (7)

2. (6)

11.1 (7)

2. (8)

1.9 (5)

1.9 (5)

0. (-1)

4

6.8 (5)

14.3 (13)

11.7 (8)

29.7 (8)

5.5 (43)

4.8 (40)

5.3 (1)

0. (-1)

5

2. (225)

54.7 (278)

11.9 (280)

8.1 (280)

7.7 (280)

39.8 (123)

19.5 (141)

0. (-1)

6

1. (1)

1.4 (3)

2.2 (4)

1.9 (1)

1.4 (7)

0.8 (4)

2.3 (5)

0. (-1)

7

2.2 (3)

5.6 (7)

1.8 (3)

2.8 (3)

6.7 (9)

45.4 (9)

1.9 (3)

0. (-1)

8

2.9 (70)

5.3 (31)

4.5 (57)

6.5 (11)

5. (42)

26.4 (71)

5.8 (40)

0. (-1)

9

2.2 (112)

6.8 (316)

3.5 (323)

12.1 (328)

4.2 (341)

4789.3 (251)

15. (328)

0. (-1)

10

4. (604)

10.9 (446)

367.9 (417)

36.9 (399)

93.4 (137)

124.9 (217)

18.8 (537)

0. (-1)

11

7.7 (82)

2.8 (24)

24.7 (55)

2.7 (2)

14.9 (77)

43. (17)

6.6 (50)

0. (-1)

12

1.8 (6)

2.3 (4)

1.2 (8)

1.5 (2)

3.3 (3)

3.4 (3)

1.6 (2)

0. (-1)

13

7.1 (369)

23.8 (1323)

27.7 (1323)

32.9 (1323)

32.9 (1323)

136.1 (671)

34. (1323)

0. (-1)

14

2. (870)

16.5 (1101)

22. (1101)

22.2 (1716)

21.8 (1101)

185.4 (2046)

46.7 (827)

0. (-1)

15

6. (97)

9.6 (110)

12.1 (100)

2.8 (119)

10.8 (21)

49.2 (119)

9.7 (119)

0. (-1)

16

1.2 (7)

1.3 (24)

8.6 (25)

4. (25)

9. (25)

143.6 (25)

19.9 (25)

0. (-1)

17

1.6 (36)

3.1 (47)

23.3 (53)

1.7 (35)

9.6 (59)

5.1 (17)

37. (53)

0. (-1)

18

1.1 (19)

28. (31)

3.7 (9)

0. (-1)

2.4 (3)

0. (-1)

0. (-1)

0. (-1)

19

8.2 (664)

6.9 (663)

5.3 (196)

10. (196)

10. (196)

55.3 (528)

8. (434)

0. (-1)

20

1.4 (211)

8.5 (51)

16.3 (149)

4.4 (73)

16.3 (159)

10.2 (24)

5.9 (69)

0. (-1)

21

1.3 (727)

17.9 (740)

8.3 (1016)

3.1 (313)

15.1 (781)

33.1 (324)

8.6 (553)

0. (-1)

22

1.8 (109)

2.6 (75)

22.5 (55)

1.1 (18)

10.7 (62)

3. (21)

2.9 (98)

0. (-1)

23

1.1 (41)

1.1 (50)

10.4 (15)

2. (15)

7. (15)

53. (15)

13.8 (15)

0. (-1)

24

1.4 (43)

1.9 (45)

2.2 (48)

3.6 (161)

5.2 (26)

51.1 (57)

3.9 (157)

0. (-1)

25

8.4 (2686)

13.4 (2913)

13.7 (2591)

13.2 (2285)

3754.9 (1276)

146.8 (2266)

28.4 (2813)

0. (-1)

26

1.4 (278)

48.2 (336)

7.2 (321)

4. (40)

15.1 (265)

35.2 (379)

6.1 (292)

0. (-1)

27

1.5 (816)

13.6 (1007)

15.7 (498)

29.1 (1063)

41.3 (457)

36.6 (124)

9.8 (1052)

0. (-1)

28

1.1 (46)

0.9 (45)

51. (15)

2.5 (15)

28.4 (15)

890.6 (15)

349.3 (15)

0. (-1)

29

1.3 (221)

3.8 (45)

5. (20)

10. (43)

4003.6 (171)

16. (577)

8.1 (591)

0. (-1)

30

1.4 (363)

10. (328)

12.5 (331)

11.2 (348)

16.3 (197)

23.8 (348)

1757.6 (348)

0. (-1)

31

1.3 (278)

6.4 (283)

4.9 (269)

3.2 (114)

4. (269)

21.6 (269)

6.3 (269)

0. (-1)

32

2.8 (83)

6.2 (127)

2.5 (74)

2.2 (83)

7.2 (127)

16.4 (63)

6.9 (17)

0. (-1)

33

4.3 (680)

13.8 (1256)

96.2 (557)

18.9 (1089)

67.3 (2300)

239.3 (2549)

45. (2354)

0. (-1)

34

2.2 (1471)

7.4 (659)

18.8 (2223)

50.9 (2170)

61.6 (1627)

1537.6 (1013)

136.1 (1464)

0. (-1)

35

7.5 (654)

36.3 (915)

116.1 (801)

6. (579)

68.7 (852)

141.7 (925)

41.5 (751)

0. (-1)

36

1.2 (72)

10.3 (4)

24.3 (108)

2.7 (95)

30.2 (112)

10.5 (104)

92.3 (6)

0. (-1)

37

1.2 (105)

9.5 (35)

14196.2 (12)

6.6 (27)

66. (74)

8.6 (14)

122.1 (25)

0. (-1)

38

1.8 (76)

17.3 (259)

102.6 (278)

89. (278)

89. (278)

232.5 (367)

123.4 (278)

0. (-1)

39

1.7 (636)

8.8 (109)

7. (109)

5.4 (515)

36.3 (1087)

27.8 (1105)

13.7 (885)

0. (-1)

40

2.5 (53)

9.5 (88)

5. (408)

6.5 (88)

63. (268)

55.3 (285)

60.5 (275)

0. (-1)

41

1.7 (264)

30.1 (394)

8.5 (55)

5.6 (70)

71.8 (309)

80.3 (55)

35.3 (309)

0. (-1)

42

1.1 (42)

3.6 (103)

1.7 (103)

1.4 (111)

8719.8 (22)

43. (11)

26.2 (41)

0. (-1)

43

1.5 (136)

1.8 (51)

13.8 (37)

1.6 (131)

4782.7 (22)

119.4 (37)

20.4 (60)

0. (-1)

44

1.9 (1)

2.4 (22)

6.4 (29)

0. (-1)

4.2 (35)

0.8 (1)

2.3 (42)

0. (-1)

45

1.1 (1)

4.9 (4)

0.9 (4)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

46

2.5 (154)

20. (601)

20.7 (596)

6.3 (609)

46.7 (637)

376.3 (596)

141. (596)

0. (-1)

47

1.4 (31)

25.5 (83)

1.1 (35)

1.8 (68)

29.9 (41)

42.2 (68)

15.3 (37)

0. (-1)

48

1.5 (58)

25.1 (143)

88.8 (96)

88.7 (96)

77.1 (93)

82.9 (93)

73.6 (96)

0. (-1)

49

1.1 (2)

11. (17)

3.1 (16)

2.1 (16)

2.2 (16)

3.2 (11)

3.3 (16)

0. (-1)

50

1.3 (24)

1.7 (99)

4. (72)

1.1 (72)

9.5 (102)

18.1 (72)

12.1 (79)

0. (-1)

51

6.2 (424)

11.6 (162)

23.1 (194)

42.3 (63)

15310.8 (134)

90.8 (255)

66. (122)

0. (-1)

52

4.1 (1017)

21. (871)

146.6 (202)

5.1 (612)

40.5 (871)

163.8 (182)

41.7 (717)

0. (-1)

53

1.4 (95)

1.2 (82)

3.1 (64)

2.2 (2)

2. (81)

2.5 (2)

62.4 (2)

0. (-1)

54

1.6 (18)

1.6 (4)

16. (46)

2.5 (46)

4.6 (58)

3.2 (25)

37.7 (39)

0. (-1)

55

2.4 (706)

6. (648)

39. (267)

125.2 (267)

28.5 (292)

11.9 (563)

53.7 (563)

0. (-1)

56

1.2 (15)

1.3 (133)

10.6 (99)

4.9 (149)

5. (150)

11. (150)

10.2 (81)

0. (-1)

57

2.1 (71)

3.9 (363)

35.1 (440)

5.1 (348)

21.1 (440)

29.5 (318)

11. (392)

0. (-1)

58

1.6 (215)

12.4 (64)

94.2 (87)

2.9 (166)

10.1 (237)

2.4 (246)

45.6 (187)

0. (-1)

59

1.7 (249)

33.5 (308)

32.9 (156)

7.4 (10)

7.3 (171)

14.2 (7)

56. (66)

0. (-1)

60

1.4 (256)

16.3 (81)

12.5 (213)

79.5 (81)

9.2 (212)

15.3 (114)

17.7 (108)

0. (-1)

61

1.9 (39)

51.5 (68)

5.7 (13)

14.2 (44)

4.5 (15)

4.3 (27)

12.4 (34)

0. (-1)

62

2.6 (133)

9.6 (341)

31.3 (88)

9.1 (340)

8.8 (404)

38.1 (427)

35. (456)

0. (-1)

63

1.8 (503)

38.5 (131)

13.2 (148)

7.4 (390)

33.9 (197)

34.4 (183)

13.8 (45)

0. (-1)

64

1.6 (202)

13.1 (44)

39.2 (172)

10.6 (23)

11.2 (91)

15.9 (189)

15.3 (28)

0. (-1)

65

1.3 (134)

5. (360)

20.1 (387)

3.9 (111)

4.3 (414)

137.4 (62)

5.7 (105)

0. (-1)

66

1.5 (58)

12.7 (250)

10.3 (343)

21.4 (209)

13.1 (209)

29.5 (193)

633.3 (22)

0. (-1)

67

1.1 (21)

3.3 (8)

4.3 (51)

2.4 (21)

5.9 (53)

17.1 (49)

2.4 (5)

0. (-1)

68

2.1 (109)

1.8 (113)

3.4 (27)

21.3 (45)

1.7 (38)

2.2 (12)

69.6 (38)

0. (-1)

69

1.2 (110)

3.3 (203)

7.8 (201)

168.3 (37)

4.7 (44)

23.3 (45)

14. (217)

0. (-1)

70

2.2 (615)

47.7 (617)

9.1 (606)

9. (151)

24.4 (509)

68.3 (344)

248.2 (367)

0. (-1)

71

1.1 (11)

1.1 (10)

1.4 (29)

8.1 (33)

1.1 (10)

3.9 (12)

1.6 (13)

0. (-1)

72

2. (114)

35. (118)

3.1 (17)

4. (53)

7. (201)

2.6 (40)

657.3 (36)

0. (-1)

73

1.9 (621)

315.7 (767)

2501.4 (795)

30.7 (256)

17. (711)

83.8 (470)

32.7 (633)

0. (-1)

74

2.1 (466)

24.9 (1562)

56.7 (174)

8.6 (46)

14.7 (937)

223.9 (697)

424.5 (175)

0. (-1)

75

1.5 (12)

90.6 (42)

619.3 (48)

7.2 (16)

28.8 (35)

3.4 (1)

2.4 (6)

0. (-1)

76

1.3 (249)

9.3 (100)

1717.5 (353)

35.1 (48)

16.5 (327)

66.6 (265)

290.5 (220)

0. (-1)

77

1. (13)

10.5 (13)

2.7 (2)

12.4 (1)

2.3 (2)

412.4 (8)

21.3 (1)

0. (-1)

78

1.5 (32)

2.4 (18)

4.3 (16)

3.3 (20)

2.2 (18)

2.3 (32)

1.3 (16)

0. (-1)

79

1.5 (207)

11.6 (574)

3987.5 (593)

17.6 (487)

3020.2 (254)

9937.7 (81)

544.2 (365)

0. (-1)

80

1.1 (9)

2.2 (2)

1.3 (6)

1.3 (2)

4.6 (1)

11.7 (4)

2.3 (2)

0. (-1)

81

1.2 (18)

1.5 (8)

1.3 (13)

1. (19)

51.7 (13)

2.8 (11)

1.8 (14)

0. (-1)

82

1.2 (60)

3.7 (284)

8.3 (12)

16.5 (170)

4.1 (42)

2.5 (64)

1015. (141)

0. (-1)

83

1.5 (28)

3.5 (187)

8.3 (76)

12.1 (133)

6.9 (33)

4.1 (9)

627.4 (22)

0. (-1)

84

1.1 (21)

2.4 (61)

3.4 (50)

788.2 (7)

6.2 (52)

6. (41)

2. (5)

0. (-1)

85

1.5 (45)

1.3 (94)

4.2 (26)

4.2 (86)

1.4 (87)

6. (61)

4.3 (35)

0. (-1)

86

4.3 (11)

4.1 (60)

5.5 (80)

3.2 (3)

4.2 (32)

35.5 (25)

3.7 (11)

0. (-1)

87

1.1 (11)

1. (10)

1.4 (29)

8.1 (32)

1.1 (10)

3.8 (12)

1.6 (13)

0. (-1)

88

1.5 (16)

3.2 (1)

4.3 (20)

4.1 (3)

4.1 (20)

0. (-1)

3. (3)

0. (-1)

89

1.4 (370)

34.4 (773)

11.4 (763)

6489.4 (123)

7.2 (484)

28.7 (464)

609.3 (219)

0. (-1)

90

1.1 (2)

2.8 (2)

2.4 (2)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

0. (-1)

91

1. (1)

3. (1)

1.3 (1)

3.5 (1)

1.7 (1)

0. (-1)

1.5 (1)

0. (-1)

92

1.3 (496)

36.7 (454)

15.7 (436)

7944.2 (100)

8.1 (279)

77.7 (251)

934. (188)

0. (-1)

93

1.2 (268)

53.3 (393)

10.3 (31)

20.3 (115)

3.4 (319)

9. (35)

1080.9 (91)

0. (-1)

94

1.5 (940)

41.8 (1158)

18.9 (1155)

7808.5 (402)

7.5 (1007)

74.1 (564)

1093.2 (490)

0. (-1)

95

1.5 (71)

2.6 (6)

5.9 (69)

9.4 (53)

3020.2 (79)

1914.1 (31)

3.7 (91)

0. (-1)

96

1.2 (14)

2.1 (9)

2. (17)

1. (2)

15.2 (14)

13.9 (4)

7. (4)

0. (-1)

97

1.2 (11)

1.9 (5)

1.4 (20)

0.8 (11)

51.4 (8)

3.2 (12)

66.7 (8)

0. (-1)

98

1.5 (92)

16.8 (373)

186.8 (52)

1.3 (7)

5. (317)

3. (376)

24.8 (8)

0. (-1)

99

1.3 (1)

4.5 (44)

9.4 (61)

11.2 (49)

4.9 (54)

2.5 (24)

6. (22)

0. (-1)

100

1.1 (21)

2.5 (44)

1.1 (21)

7.9 (52)

4.5 (39)

16.9 (21)

1.7 (21)

0. (-1)

101

1.7 (547)

26.3 (638)

146.8 (620)

19. (393)

8.6 (80)

40. (172)

718. (543)

0. (-1)

102

1.6 (54)

7. (46)

1.8 (42)

2.9 (67)

7.5 (75)

1.3 (2)

324.8 (32)

0. (-1)

103

1.5 (214)

45.1 (676)

10357.7 (510)

141. (1121)

226.9 (1297)

68.3 (1213)

24.2 (1203)

0. (-1)

104

1.4 (207)

3. (178)

15275. (454)

144. (373)

197.8 (463)

42.4 (280)

23. (257)

0. (-1)

105

1.2 (152)

26.8 (109)

123.6 (126)

3. (83)

541.4 (138)

145.8 (74)

35.4 (64)

0. (-1)

106

1.4 (273)

44.6 (159)

1800.7 (350)

18.1 (272)

20.7 (379)

62.9 (245)

776.9 (30)

0. (-1)

107

1.1 (22)

3.4 (21)

31766. (14)

0. (-1)

104.6 (24)

0. (-1)

0. (-1)

0. (-1)

108

1.2 (1)

9.9 (48)

1.6 (2)

1.3 (4)

4.9 (20)

2.6 (1)

4.2 (3)

0. (-1)

109

1.5 (1)

5.6 (42)

9.4 (59)

18.7 (47)

4.9 (59)

2.4 (22)

33.1 (8)

0. (-1)

110

1.9 (15)

2.5 (11)

2.1 (9)

3.3 (11)

4. (7)

1.3 (2)

2.5 (7)

0. (-1)

111

1.7 (13)

2.4 (5)

2.2 (7)

4.3 (7)

3.3 (7)

1.2 (2)

2.7 (6)

0. (-1)

112

1.2 (43)

5.1 (20)

26.7 (102)

1.9 (94)

40.1 (103)

35.7 (93)

2.4 (94)

0. (-1)

113

1.4 (57)

13.4 (37)

8. (30)

22.4 (42)

13. (57)

59.8 (7)

17.1 (37)

0. (-1)

114

1.1 (14)

3.8 (22)

31765.8 (3)

0. (-1)

98.2 (12)

0. (-1)

0. (-1)

0. (-1)

115

1.4 (54)

4.7 (42)

13.1 (269)

25.9 (47)

5.7 (42)

3.3 (1)

11.7 (42)

0. (-1)

116

1. (1)

13.2 (39)

4.1 (29)

14.9 (16)

5.1 (6)

0. (-1)

5.7 (18)

0. (-1)

117

1.2 (68)

3.2 (18)

5.6 (73)

120.4 (20)

4.5 (68)

2.2 (53)

4.2 (20)

0. (-1)

118

2.1 (819)

251.5 (874)

17.6 (578)

1460.2 (263)

7. (515)

2.6 (5)

5.8 (513)

0. (-1)

119

1.6 (140)

45.2 (153)

6.5 (290)

2.9 (65)

5.8 (227)

0. (-1)

7. (196)

0. (-1)

120

1.7 (340)

19.3 (232)

27. (339)

3.7 (67)

34.3 (339)

13.1 (90)

7.1 (286)

0. (-1)

121

1.4 (83)

104.2 (207)

265.8 (153)

37.5 (109)

8.8 (159)

0. (-1)

5.1 (197)

0. (-1)

122

2.5 (212)

227.9 (265)

7. (238)

43.2 (130)

15.3 (263)

3. (170)

4.3 (256)

0. (-1)

123

1.4 (346)

462.7 (634)

19.2 (391)

1629.1 (267)

8.2 (336)

2.2 (47)

6.9 (335)

0. (-1)

124

1.1 (48)

5.1 (25)

11.2 (19)

13.5 (25)

2.6 (58)

2.9 (33)

2.7 (41)

0. (-1)

125

1.4 (930)

582.4 (1351)

24. (971)

2062.5 (624)

7.8 (923)

3. (930)

7.5 (922)

0. (-1)

126

1.4 (321)

66.8 (138)

367.6 (432)

58. (256)

27.3 (461)

6. (459)

15. (389)

0. (-1)

127

1.4 (54)

5.6 (42)

6.9 (21)

33.4 (39)

3.8 (42)

3.1 (1)

3.1 (41)

0. (-1)

128

1.3 (27)

4.2 (25)

5. (83)

39.4 (15)

4.6 (69)

2.3 (53)

2.9 (61)

0. (-1)

129

1.3 (50)

5.3 (36)

11. (18)

6.4 (13)

7.8 (20)

0. (-1)

13.6 (15)

0. (-1)

130

1.5 (15)

2.5 (8)

2. (9)

4.9 (8)

3.7 (14)

0. (-1)

2.2 (8)

0. (-1)

131

1.3 (20)

3.3 (10)

1.9 (5)

3.5 (1)

5. (22)

0. (-1)

2.2 (10)

0. (-1)

132

1.3 (6)

2.7 (3)

2.1 (8)

2.5 (8)

2.3 (9)

4.9 (18)

3.3 (12)

0. (-1)

133

1. (1)

1.2 (1)

1.8 (1)

0. (-1)

1.4 (1)

0. (-1)

0. (-1)

0. (-1)

134

1.2 (7)

3.1 (18)

26.9 (15)

39.7 (11)

16.6 (11)

0. (-1)

24.5 (11)

0. (-1)

135

1.3 (186)

29.1 (187)

5281024.1 (170)

85. (57)

7.2 (231)

6948.3 (39)

558.9 (93)

0. (-1)

136

3.3 (23)

25.2 (272)

4.6 (211)

9.5 (209)

8.5 (143)

35.6 (18)

406.5 (236)

0. (-1)

137

1.8 (299)

9.5 (164)

9.4 (331)

58.8 (171)

13.9 (273)

10.3 (396)

6002.2 (153)

0. (-1)

138

1. (1)

2.7 (1)

6.9 (9)

0.4 (5)

12. (4)

1.1 (5)

0.7 (5)

0. (-1)

139

4.3 (259)

7.9 (276)

8.4 (1)

90.9 (225)

4. (236)

5.6 (18)

2097.9 (70)

0. (-1)

140

19.2 (34)

9.1 (133)

1.8 (70)

81.3 (34)

4.2 (63)

16.2 (43)

264.4 (31)

0. (-1)

141

10.8 (759)

718.9 (434)

638.5 (860)

418.5 (198)

27.7 (503)

4789.3 (480)

5737. (605)

0. (-1)

142

1.8 (32)

2.5 (95)

4.3 (156)

1.7 (155)

1.8 (7)

2.3 (11)

9.9 (145)

0. (-1)

143

2.4 (175)

3.9 (33)

19.9 (90)

3.3 (195)

6. (642)

2.9 (413)

56.7 (620)

0. (-1)

144

1.7 (147)

11.3 (469)

14. (55)

12.1 (177)

9.2 (104)

8.1 (206)

15.5 (255)

0. (-1)

145

1.8 (32)

4.9 (41)

2.6 (156)

1.8 (155)

3. (7)

2.3 (11)

26.4 (147)

0. (-1)

146

1.3 (15)

2. (5)

2.8 (5)

2.4 (11)

5.1 (33)

2. (23)

36.3 (23)

0. (-1)

147

1.3 (25)

11. (114)

3.3 (18)

2.4 (24)

5.7 (29)

2. (58)

4.6 (80)

0. (-1)

148

2.1 (24)

4. (83)

114.6 (118)

1.5 (165)

2.3 (105)

7.5 (105)

1.9 (134)

0. (-1)

149

1.1 (11)

3.6 (25)

43. (20)

1.8 (8)

7555.1 (24)

44.7 (8)

1.2 (21)

0. (-1)

150

6.7 (315)

6.4 (429)

80.4 (146)

4.8 (218)

9.9 (1223)

4.3 (197)

2.4 (1279)

0. (-1)

151

1.3 (41)

3.3 (36)

24.5 (37)

26.3 (61)

3. (30)

9.5 (12)

1. (27)

0. (-1)

152

1.9 (344)

2.7 (248)

12.5 (56)

9.5 (180)

10. (375)

11.6 (375)

7.9 (375)

0. (-1)

153

1.4 (50)

11.4 (54)

27.1 (147)

5.4 (67)

5.6 (50)

13.1 (131)

5.8 (125)

0. (-1)

154

2.3 (23)

11.4 (164)

28.2 (31)

13.3 (107)

6.8 (64)

5.9 (106)

27.1 (135)

0. (-1)

155

1.1 (7)

1.2 (7)

1. (2)

1. (2)

1.1 (5)

2.7 (4)

1.1 (2)

0. (-1)

156

1.4 (8)

2.7 (107)

6. (105)

3.4 (31)

8.7 (151)

2.5 (12)

84.8 (69)

0. (-1)

157

1.3 (23)

12.7 (22)

2.9 (26)

1.7 (14)

4. (24)

2.7 (8)

2.6 (2)

0. (-1)

158

1.4 (8)

3. (114)

6. (112)

1.9 (22)

8.7 (156)

2.6 (12)

27.3 (91)

0. (-1)

159

1.3 (26)

13. (21)

3.3 (26)

1.6 (13)

4. (23)

2.7 (8)

3.5 (26)

0. (-1)

160

1.5 (178)

10.9 (193)

7.5 (379)

3.7 (327)

23.9 (496)

24.6 (231)

8.7 (6)

0. (-1)

161

1.4 (36)

2.1 (3)

3.4 (98)

12.9 (90)

6.6 (20)

1.9 (10)

6.9 (29)

0. (-1)

162

1.8 (11)

1.5 (24)

1.8 (28)

6. (7)

5.4 (21)

0. (-1)

1.1 (7)

0. (-1)

163

1.7 (312)

8.7 (365)

7.3 (126)

21.3 (134)

32.5 (87)

26.4 (102)

25.9 (273)

0. (-1)

164

1.9 (61)

9.9 (394)

4.6 (90)

21.9 (315)

2699.3 (269)

9185.8 (34)

23.5 (81)

0. (-1)

165

1.5 (16)

13.6 (173)

3.4 (15)

3.6 (1)

16.2 (36)

4.1 (8)

8.7 (6)

0. (-1)

166

2.1 (109)

1.8 (38)

8. (107)

3.5 (5)

4.3 (108)

2.3 (12)

18. (32)

0. (-1)

167

1.3 (29)

2.1 (3)

3.4 (64)

12.9 (56)

6.6 (20)

1.9 (10)

5.2 (25)

0. (-1)

168

1.8 (11)

1.5 (12)

1.8 (28)

6. (7)

5.4 (21)

0. (-1)

1.1 (7)

0. (-1)

169

1.4 (185)

8.7 (328)

6.8 (10)

11.4 (196)

40.1 (177)

53.6 (55)

25.9 (246)

0. (-1)

170

1.9 (39)

2.5 (11)

3.4 (42)

7.4 (13)

2966.3 (69)

1913.7 (26)

16.8 (61)

0. (-1)

171

1.3 (2)

3.6 (63)

5.5 (68)

3.2 (8)

23.5 (11)

1.7 (8)

3.2 (8)

0. (-1)

172

2. (73)

4.1 (73)

4.1 (144)

12.6 (188)

65.9 (200)

98.5 (64)

4.2 (102)

0. (-1)

173

1.6 (139)

10.5 (254)

7.5 (221)

23.3 (190)

178.8 (253)

7.3 (171)

13. (219)

0. (-1)

174

1.7 (2)

3.7 (47)

5.8 (37)

3.7 (8)

20. (47)

11.7 (27)

3.2 (8)

0. (-1)

175

2.4 (109)

6.4 (113)

6.2 (35)

13. (193)

66.3 (205)

11.6 (148)

5.9 (29)

0. (-1)

176

1.3 (46)

10.3 (47)

7.5 (24)

6.3 (10)

177.8 (46)

5.5 (5)

13. (45)

0. (-1)

177

1.3 (6)

1.9 (1)

2.9 (5)

2.5 (7)

16.2 (9)

0. (-1)

2.7 (7)

0. (-1)

178

1.2 (69)

2.8 (80)

3.6 (79)

2. (15)

22.6 (82)

1.5 (5)

2. (31)

0. (-1)

179

3.5 (186)

10.9 (185)

11.8 (27)

8.6 (59)

168.4 (146)

2.3 (191)

5.4 (186)

0. (-1)

180

1.4 (108)

14.4 (168)

8.8 (48)

21.9 (158)

170.3 (218)

5. (142)

6.4 (219)

0. (-1)

181

1.4 (6)

8.6 (26)

4.6 (5)

3.1 (7)

15.7 (9)

0. (-1)

2.8 (7)

0. (-1)

182

1.3 (15)

4.7 (82)

3.9 (78)

2.3 (15)

28.8 (15)

1.4 (5)

1.9 (5)

0. (-1)

183

3.3 (160)

10. (24)

22.3 (24)

6.3 (24)

33.8 (124)

2.1 (165)

9. (24)

0. (-1)

184

1.2 (7)

3.4 (24)

5.6 (18)

6.2 (1)

96.8 (15)

0. (-1)

8.8 (22)

0. (-1)

185

2.9 (221)

515.8 (777)

140.9 (767)

26. (100)

105. (745)

138.5 (810)

12.2 (11)

0. (-1)

186

1.8 (32)

1.9 (141)

2.7 (38)

1.4 (15)

3.3 (7)

1. (22)

2.3 (19)

0. (-1)

187

2.4 (217)

3.5 (230)

9.1 (104)

3.5 (219)

6. (651)

3.6 (255)

2.6 (118)

0. (-1)

188

1.5 (199)

7.3 (368)

4.9 (357)

12.3 (115)

5.3 (11)

8.2 (147)

8.4 (115)

0. (-1)

189

1.8 (32)

3.2 (39)

2.3 (18)

1.2 (135)

2. (7)

0. (-1)

2. (19)

0. (-1)

190

1.8 (369)

11.8 (176)

17.2 (93)

2.6 (22)

7. (508)

0. (-1)

2.2 (528)

0. (-1)

191

1.4 (235)

5.7 (49)

15. (291)

9.2 (93)

9.7 (20)

2.8 (278)

6.3 (93)

0. (-1)

192

2.5 (202)

3. (220)

43.8 (156)

5.3 (202)

11.3 (216)

30.9 (63)

7.5 (1)

0. (-1)

193

1.6 (21)

7.9 (18)

54.2 (20)

2.3 (40)

31.4 (35)

62.6 (8)

10.6 (1)

0. (-1)

194

3.3 (439)

5.6 (156)

71.1 (235)

16.1 (244)

7.1 (516)

4.5 (307)

6.7 (15)

0. (-1)

195

1.4 (52)

17.8 (42)

31.6 (46)

5.2 (15)

5. (37)

118.9 (37)

15.4 (37)

0. (-1)

196

2.3 (868)

3.7 (868)

14.5 (220)

18.3 (1152)

12.2 (1368)

31. (997)

9.7 (1368)

0. (-1)

197

2.1 (81)

8.2 (323)

22.2 (318)

4.3 (72)

6.3 (315)

7.8 (276)

7.6 (133)

0. (-1)

198

2.3 (23)

8.3 (112)

1614.5 (159)

3.9 (95)

7.1 (47)

118.9 (108)

15.3 (108)

0. (-1)

199

1.9 (172)

4.9 (430)

8. (54)

3.5 (37)

3.8 (467)

15.5 (446)

5.1 (235)

0. (-1)

200

1.4 (7)

16.3 (85)

7.9 (124)

1.4 (47)

8.9 (168)

1.5 (35)

0. (-1)

0. (-1)

201

2.9 (38)

25.8 (18)

40.2 (80)

1. (34)

9.3 (6)

2. (38)

3.3 (47)

0. (-1)

202

5.3 (71)

3.2 (114)

5.8 (75)

2.1 (10)

9.7 (156)

1.2 (9)

0. (-1)

0. (-1)

203

1.5 (31)

8.2 (13)

5.2 (66)

2.7 (31)

7.3 (71)

2.3 (54)

3.1 (54)

0. (-1)

204

1.8 (283)

1.6 (138)

2.1 (190)

1.1 (31)

2. (140)

2.7 (221)

1.6 (18)

0. (-1)

205

2. (181)

2.5 (57)

1.5 (92)

3.3 (136)

2.5 (60)

2. (179)

0. (-1)

0. (-1)

206

1.8 (52)

1.8 (35)

3.4 (134)

4.4 (88)

5.7 (117)

7.8 (69)

557.1 (66)

0. (-1)

207

1.7 (45)

1.8 (35)

1.2 (7)

0. (-1)

0. (-1)

9.1 (69)

0. (-1)

0. (-1)

208

1.4 (161)

1.3 (153)

2.4 (41)

4.1 (155)

2.7 (28)

4.9 (30)

0. (-1)

0. (-1)

209

88.4 (910)

650.2 (1384)

183783.9 (2420)

6.9 (1028)

14782.7 (2646)

20.4 (315)

31. (1760)

0. (-1)

210

250.6 (1075)

5941.5 (2439)

6816.7 (2524)

152.4 (703)

145.9 (2571)

164.5 (2571)

4761.5 (2727)

0. (-1)

211

265. (1928)

5645.2 (2956)

1580.6 (1154)

430.8 (948)

78.3 (2418)

52.7 (2449)

39084.8 (2246)

0. (-1)

212

130.3 (400)

21182. (1738)

767.1 (1263)

1205. (99)

126.2 (731)

363.2 (2409)

1134. (1195)

0. (-1)

213

430.4 (1124)

38.9 (1117)

892063.8 (1190)

205.3 (735)

25.6 (735)

37. (735)

395.1 (755)

0. (-1)

214

66.8 (46)

527.7 (105)

439.4 (227)

439.4 (227)

21.8 (64)

522.8 (105)

573.4 (258)

0. (-1)

215

3.2 (77)

10. (17)

2.5 (9)

6.5 (16)

10. (23)

23.3 (162)

12.5 (18)

0. (-1)

216

2.9 (6)

1. (1)

11.2 (9)

1.4 (1)

1.2 (8)

0.7 (2)

0. (-1)

0. (-1)

1.11 Pass/Fail per test file for each CAS system

The following table gives the number of passed integrals and number of failed integrals per test number. There are 210 tests. Each tests corresponds to one input file.

#
Rubi
MMA
Maple
Maxima
FriCAS
Sympy
Giac
Mupad
Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail Pass Fail
1 175 0 175 0 173 2 166 9 174 1 165 10 170 5 169 6
2 33 2 34 1 28 7 16 19 25 10 9 26 17 18 9 26
3 13 1 14 0 12 2 8 6 13 1 9 5 10 4 11 3
4 48 2 50 0 33 17 26 24 50 0 19 31 41 9 12 38
5 279 5 284 0 282 2 251 33 281 3 254 30 269 15 270 14
6 3 4 7 0 5 2 3 4 7 0 5 2 5 2 7 0
7 7 2 9 0 9 0 7 2 9 0 5 4 9 0 9 0
8 113 0 113 0 113 0 111 2 112 1 107 6 111 2 106 7
9 376 0 376 0 376 0 374 2 376 0 363 13 375 1 372 4
10 704 1 705 0 656 49 565 140 662 43 460 245 590 115 542 163
11 110 6 102 14 88 28 20 96 90 26 29 87 36 80 37 79
12 8 0 8 0 8 0 7 1 8 0 8 0 8 0 8 0
13 1917 0 1917 0 1565 352 1328 589 1603 314 1225 692 1380 537 1241 676
14 3200 1 3201 0 2870 331 2042 1159 2932 269 1657 1544 2442 759 1884 1317
15 158 1 154 5 128 31 39 120 69 90 30 129 45 114 49 110
16 34 0 34 0 28 6 16 18 28 6 19 15 28 6 4 30
17 78 0 78 0 78 0 27 51 64 14 4 74 48 30 39 39
18 35 0 35 0 35 0 0 35 9 26 0 35 0 35 0 35
19 1071 0 1071 0 785 286 632 439 732 339 1024 47 616 455 695 376
20 349 0 349 0 264 85 79 270 277 72 103 246 106 243 66 283
21 1156 0 1156 0 1048 108 682 474 984 172 631 525 822 334 730 426
22 114 1 114 1 107 8 15 100 68 47 26 89 31 84 27 88
23 48 3 51 0 14 37 14 37 14 37 28 23 14 37 14 37
24 174 0 174 0 170 4 170 4 170 4 154 20 166 8 129 45
25 3078 0 3059 19 2685 393 2196 882 2630 448 2888 190 2051 1027 2228 850
26 385 0 383 2 255 130 166 219 218 167 144 241 130 255 170 215
27 1081 0 1081 0 911 170 391 690 813 268 406 675 571 510 531 550
28 46 0 46 0 12 34 12 34 12 34 23 23 12 34 12 34
29 594 0 594 0 577 17 415 179 538 56 430 164 420 174 449 145
30 454 0 454 0 386 68 153 301 325 129 125 329 261 193 193 261
31 298 0 296 2 275 23 212 86 277 21 138 160 227 71 197 101
32 143 0 143 0 113 30 108 35 113 30 101 42 111 32 132 11
33 2589 1 2580 10 2324 266 1392 1198 2325 265 1120 1470 1980 610 1589 1001
34 2627 19 2646 0 2584 62 1715 931 2563 83 1365 1281 2272 374 1685 961
35 957 1 942 16 728 230 312 646 659 299 265 693 475 483 276 682
36 122 1 123 0 121 2 67 56 111 12 67 56 90 33 53 70
37 138 5 143 0 140 3 15 128 83 60 12 131 53 90 19 124
38 400 0 394 6 357 43 291 109 352 48 189 211 351 49 195 205
39 1126 0 1126 0 1061 65 687 439 1059 67 441 685 822 304 695 431
40 412 1 405 8 399 14 77 336 331 82 187 226 182 231 184 229
41 410 3 406 7 376 37 144 269 329 84 131 282 259 154 218 195
42 111 0 111 0 111 0 83 28 93 18 45 66 106 5 106 5
43 145 0 145 0 143 2 73 72 125 20 80 65 143 2 143 2
44 42 0 40 2 40 2 0 42 26 16 6 36 6 36 1 41
45 4 0 4 0 4 0 0 4 0 4 0 4 0 4 0 4
46 664 0 662 2 496 168 302 362 535 129 254 410 436 228 360 304
47 96 0 92 4 49 47 17 79 49 47 42 54 37 59 49 47
48 156 0 147 9 137 19 66 90 129 27 78 78 110 46 122 34
49 17 0 17 0 3 14 2 15 7 10 2 15 4 13 5 12
50 140 0 139 1 136 4 24 116 135 5 47 93 109 31 72 68
51 491 3 494 0 489 5 408 86 456 38 436 58 426 68 485 9
52 1019 6 1009 16 844 181 359 666 838 187 322 703 519 506 455 570
53 98 0 98 0 78 20 64 34 93 5 38 60 56 42 58 40
54 93 0 85 8 81 12 78 15 93 0 51 42 54 39 53 40
55 763 7 752 18 634 136 499 271 687 83 372 398 369 401 576 194
56 193 0 193 0 121 72 106 87 123 70 79 114 102 91 60 133
57 456 0 449 7 333 123 225 231 280 176 283 173 190 266 146 310
58 249 0 243 6 139 110 68 181 90 159 47 202 58 191 46 203
59 314 0 301 13 224 90 238 76 210 104 114 200 191 123 200 114
60 263 0 249 14 161 102 180 83 156 107 54 209 125 138 127 136
61 106 2 107 1 45 63 68 40 41 67 20 88 36 72 35 73
62 543 4 543 4 344 203 222 325 221 326 166 381 216 331 209 338
63 640 1 604 37 418 223 338 303 393 248 197 444 351 290 326 315
64 314 0 314 0 267 47 220 94 279 35 133 181 188 126 183 131
65 538 0 538 0 446 92 242 296 439 99 102 436 213 325 248 290
66 331 17 347 1 264 84 203 145 314 34 116 232 183 165 143 205
67 72 0 72 0 47 25 32 40 47 25 32 40 39 33 36 36
68 113 0 113 0 113 0 53 60 113 0 26 87 71 42 20 93
69 357 0 349 8 245 112 270 87 305 52 112 245 183 174 129 228
70 652 1 638 15 569 84 287 366 533 120 108 545 314 339 258 395
71 36 0 36 0 34 2 34 2 36 0 20 16 34 2 16 20
72 206 2 201 7 178 30 141 67 178 30 5 203 156 52 154 54
73 834 3 795 42 640 197 217 620 580 257 165 672 482 355 344 493
74 1549 14 1512 51 1416 147 982 581 1295 268 242 1321 1217 346 1131 432
75 51 0 47 4 50 1 16 35 31 20 4 47 20 31 13 38
76 356 2 333 25 296 62 133 225 275 83 102 256 288 70 178 180
77 19 0 15 4 13 6 13 6 13 6 8 11 13 6 13 6
78 34 0 18 16 5 29 7 27 9 25 1 33 3 31 9 25
79 592 2 580 14 523 71 332 262 481 113 78 516 311 283 334 260
80 9 0 9 0 9 0 2 7 9 0 5 4 9 0 9 0
81 19 0 19 0 19 0 5 14 18 1 6 13 9 10 19 0
82 294 0 294 0 196 98 92 202 197 97 18 276 39 255 80 214
83 189 0 189 0 135 54 140 49 137 52 55 134 112 77 74 115
84 62 0 62 0 45 17 39 23 45 17 32 30 39 23 35 27
85 99 0 99 0 87 12 69 30 91 8 34 65 52 47 30 69
86 88 0 88 0 88 0 27 61 57 31 23 65 32 56 34 54
87 34 0 34 0 32 2 32 2 34 0 18 16 32 2 15 19
88 22 0 22 0 22 0 17 5 21 1 1 21 21 1 18 4
89 932 0 929 3 854 78 325 607 675 257 101 831 281 651 310 622
90 4 0 4 0 4 0 0 4 0 4 0 4 0 4 0 4
91 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0
92 644 0 635 9 629 15 209 435 470 174 69 575 210 434 231 413
93 392 1 389 4 238 155 119 274 238 155 15 378 26 367 75 318
94 1541 0 1534 7 1508 33 499 1042 1161 380 126 1415 540 1001 629 912
95 98 0 98 0 96 2 70 28 85 13 19 79 76 22 67 31
96 21 0 21 0 21 0 2 19 18 3 6 15 19 2 19 2
97 20 0 20 0 20 0 4 16 19 1 5 15 20 0 20 0
98 387 0 387 0 267 120 137 250 241 146 18 369 82 305 122 265
99 62 1 63 0 58 5 49 14 63 0 28 35 35 28 32 31
100 66 0 66 0 36 30 61 5 48 18 35 31 36 30 38 28
101 700 0 700 0 571 129 405 295 573 127 124 576 258 442 369 331
102 91 0 90 1 83 8 79 12 83 8 8 83 82 9 83 8
103 1321 7 1253 75 1103 225 575 753 1164 164 295 1033 457 871 835 493
104 855 0 819 36 783 72 428 427 783 72 209 646 271 584 528 327
105 167 4 169 2 122 49 84 87 113 58 63 108 84 87 103 68
106 499 0 497 2 412 87 269 230 414 85 99 400 280 219 283 216
107 45 6 51 0 33 18 0 51 42 9 0 51 0 51 0 51
108 52 0 52 0 37 15 37 15 37 15 8 44 15 37 26 26
109 61 0 61 0 58 3 49 12 61 0 28 33 35 26 28 33
110 23 0 23 0 23 0 19 4 23 0 6 17 23 0 23 0
111 19 0 19 0 19 0 15 4 19 0 4 15 19 0 19 0
112 106 0 105 1 103 3 3 103 103 3 2 104 3 103 103 3
113 64 0 64 0 63 1 23 41 64 0 11 53 54 10 39 25
114 28 4 32 0 20 12 0 32 32 0 0 32 0 32 0 32
115 299 0 299 0 227 72 93 206 218 81 29 270 39 260 78 221
116 46 0 46 0 42 4 36 10 46 0 20 26 24 22 24 22
117 83 0 79 4 51 32 48 35 63 20 37 46 43 40 47 36
118 878 1 867 12 735 144 323 556 609 270 51 828 243 636 323 556
119 301 5 306 0 267 39 175 131 243 63 8 298 191 115 193 113
120 359 6 345 20 331 34 189 176 260 105 40 325 220 145 181 184
121 240 1 234 7 218 23 98 143 147 94 6 235 76 165 56 185
122 286 0 282 4 267 19 166 120 238 48 1 285 202 84 191 95
123 628 6 634 0 582 52 214 420 458 176 8 626 183 451 195 439
124 70 0 70 0 70 0 48 22 70 0 3 67 46 24 49 21
125 1361 12 1341 32 1250 123 511 862 1036 337 11 1362 462 911 552 821
126 468 2 438 32 431 39 290 180 416 54 22 448 250 220 243 227
127 70 0 70 0 53 17 28 42 53 17 9 61 28 42 16 54
128 84 0 80 4 52 32 51 33 64 20 37 47 44 40 47 37
129 59 0 53 6 41 18 25 34 41 18 3 56 40 19 33 26
130 16 0 16 0 16 0 12 4 16 0 0 16 16 0 16 0
131 23 0 23 0 23 0 18 5 23 0 0 23 23 0 23 0
132 24 0 24 0 24 0 24 0 24 0 9 15 24 0 24 0
133 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1
134 27 0 27 0 27 0 18 9 27 0 0 27 21 6 8 19
135 254 0 252 2 226 28 159 95 221 33 68 186 161 93 169 85
136 291 3 294 0 290 4 271 23 290 4 68 226 281 13 290 4
137 395 2 397 0 359 38 341 56 362 35 121 276 245 152 155 242
138 9 0 9 0 9 0 1 8 9 0 1 8 1 8 1 8
139 330 0 305 25 148 182 141 189 183 147 69 261 90 240 149 181
140 140 2 142 0 114 28 114 28 115 27 43 99 63 79 50 92
141 944 6 946 4 902 48 656 294 912 38 434 516 725 225 700 250
142 227 0 227 0 217 10 75 152 85 142 101 126 163 64 75 152
143 700 3 698 5 555 148 253 450 265 438 209 494 238 465 146 557
144 471 3 466 8 378 96 115 359 206 268 161 313 252 222 89 385
145 227 0 223 4 215 12 75 152 85 142 101 126 163 64 73 154
146 33 0 33 0 30 3 12 21 15 18 11 22 15 18 3 30
147 118 0 113 5 78 40 31 87 51 67 34 84 57 61 22 96
148 166 0 163 3 151 15 93 73 92 74 96 70 85 81 108 58
149 31 0 27 4 30 1 14 17 12 19 11 20 6 25 14 17
150 1284 17 1280 21 1198 103 407 894 565 736 580 721 457 844 754 547
151 70 0 67 3 69 1 37 33 28 42 23 47 9 61 30 40
152 385 0 368 17 203 182 134 251 286 99 91 294 117 268 147 238
153 153 0 151 2 134 19 87 66 143 10 51 102 59 94 55 98
154 234 0 228 6 228 6 143 91 168 66 81 153 111 123 108 126
155 12 0 12 0 6 6 1 11 6 6 3 9 1 11 6 6
156 174 0 174 0 139 35 62 112 124 50 70 104 97 77 53 121
157 50 0 49 1 37 13 18 32 28 22 13 37 27 23 10 40
158 178 0 178 0 147 31 63 115 123 55 67 111 94 84 57 121
159 49 0 49 0 36 13 15 34 27 22 12 37 25 24 12 37
160 448 54 496 6 340 162 289 213 465 37 120 382 198 304 209 293
161 102 0 102 0 80 22 84 18 78 24 32 70 54 48 29 73
162 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24
163 369 0 369 0 330 39 266 103 353 16 122 247 279 90 221 148
164 525 0 501 24 486 39 196 329 445 80 77 448 232 293 247 278
165 183 0 182 1 111 72 143 40 150 33 62 121 103 80 70 113
166 111 0 111 0 111 0 64 47 111 0 26 85 71 40 20 91
167 68 0 68 0 58 10 62 6 60 8 24 44 43 25 21 47
168 33 0 33 0 31 2 31 2 33 0 9 24 31 2 9 24
169 336 0 336 0 308 28 208 128 325 11 109 227 259 77 190 146
170 85 0 83 2 83 2 34 51 76 9 18 67 41 44 55 30
171 77 0 72 5 69 8 63 14 64 13 30 47 45 32 39 38
172 247 0 247 0 205 42 151 96 209 38 72 175 186 61 175 72
173 263 0 263 0 249 14 177 86 263 0 40 223 200 63 185 78
174 61 0 61 0 58 3 55 6 61 0 28 33 35 26 28 33
175 224 0 224 0 165 59 105 119 179 45 34 190 131 93 131 93
176 53 0 53 0 43 10 16 37 53 0 7 46 35 18 32 21
177 16 0 16 0 8 8 5 11 12 4 3 13 4 12 4 12
178 84 0 80 4 50 34 39 45 62 22 36 48 44 40 47 37
179 201 0 192 9 140 61 90 111 183 18 14 187 116 85 94 107
180 220 0 220 0 180 40 147 73 220 0 10 210 102 118 121 99
181 27 2 29 0 19 10 13 16 25 4 4 25 8 21 8 21
182 83 0 78 5 49 34 55 28 62 21 36 47 43 40 47 36
183 174 1 175 0 136 39 109 66 169 6 3 172 107 68 91 84
184 27 0 27 0 14 13 10 17 27 0 0 27 16 11 5 22
185 1050 9 1055 4 939 120 762 297 992 67 344 715 812 247 740 319
186 156 0 156 0 109 47 51 105 43 113 48 108 36 120 30 126
187 659 4 656 7 506 157 255 408 241 422 199 464 95 568 133 530
188 369 2 370 1 249 122 100 271 158 213 101 270 98 273 78 293
189 166 0 160 6 120 46 57 109 52 114 25 141 39 127 32 134
190 564 5 559 10 476 93 239 330 237 332 93 476 106 463 144 425
191 295 1 290 6 197 99 69 227 130 166 40 256 81 215 64 232
192 243 0 231 12 206 37 154 89 147 96 84 159 127 116 128 115
193 49 0 48 1 48 1 29 20 17 32 10 39 17 32 17 32
194 538 0 535 3 509 29 270 268 259 279 145 393 177 361 175 363
195 62 0 60 2 61 1 34 28 17 45 16 46 17 45 17 45
196 1378 0 1353 25 1100 278 620 758 1118 260 456 922 667 711 698 680
197 361 0 359 2 342 19 268 93 350 11 99 262 261 100 239 122
198 300 0 294 6 273 27 246 54 223 77 108 192 152 148 153 147
199 916 19 914 21 784 151 505 430 841 94 194 741 444 491 518 417
200 190 0 190 0 154 36 63 127 130 60 49 141 45 145 52 138
201 100 0 99 1 83 17 21 79 73 27 3 97 4 96 56 44
202 178 0 178 0 103 75 61 117 123 55 38 140 46 132 49 129
203 71 0 70 1 53 18 42 29 53 18 36 35 32 39 41 30
204 311 0 300 11 188 123 140 171 258 53 198 113 131 180 203 108
205 206 12 190 28 154 64 120 98 190 28 118 100 60 158 60 158
206 136 0 134 2 118 18 57 79 126 10 52 84 71 65 34 102
207 135 1 136 0 104 32 34 102 34 102 52 84 34 102 34 102
208 198 0 195 3 152 46 127 71 104 94 47 151 16 182 70 128
209 1998 1156 2972 182 2634 520 1270 1884 2325 829 1125 2029 1305 1849 1501 1653
210 1890 1110 2903 97 2976 24 2801 199 2991 9 2840 160 2640 360 2718 282
211 1865 1135 2909 91 2969 31 2805 195 2991 9 2839 161 2650 350 2688 312
212 1867 1133 2889 111 2978 22 2793 207 2995 5 2838 162 2615 385 2697 303
213 842 493 1298 37 1331 4 1233 102 1333 2 1275 60 1163 172 1209 126
214 304 17 319 2 306 15 297 24 309 12 265 56 295 26 289 32
215 163 0 163 0 159 4 151 12 163 0 148 15 163 0 151 12
216 8 7 11 4 15 0 2 13 14 1 2 13 0 15 1 14

1.12 Timing

The command AbsoluteTiming[] was used in Mathematica to obtain the elapsed time for each integrate call. In Maple, the command Usage was used as in the following example

cpu_time := Usage(assign ('result_of_int',int(expr,x)),output='realtime'

For all other CAS systems, the elapsed time to complete each integral was found by taking the difference between the time after the call completed from the time before the call was made. This was done using Python’s time.time() call.

All elapsed times shown are in seconds. A time limit of 3 CPU minutes was used for each integral. If the integrate command did not complete within this time limit, the integral was aborted and considered to have failed and assigned an F grade. The time used by failed integrals due to time out was not counted in the final statistics.

1.13 Verification

A verification phase was applied on the result of integration for Rubi and Mathematica.

Future version of this report will implement verification for the other CAS systems. For the integrals whose result was not run through a verification phase, it is assumed that the antiderivative was correct.

Verification phase also had 3 minutes time out. An integral whose result was not verified could still be correct, but further investigation is needed on those integrals. These integrals were marked in the summary table below and also in each integral separate section so they are easy to identify and locate.

1.14 Important notes about some of the results

1.14.1 Important note about Maxima results

Since tests were run in a batch mode, and using an automated script, then any integral where Maxima needed an interactive response from the user to answer a question during the evaluation of the integral will fail.

The exception raised is ValueError. Therefore Maxima results is lower than what would result if Maxima was run directly and each question was answered correctly.

The percentage of such failures were not counted for each test file, but for an example, for the Timofeev test file, there were about 14 such integrals out of total 705, or about 2 percent. This percentage can be higher or lower depending on the specific input test file.

Such integrals can be identified by looking at the output of the integration in each section for Maxima. The exception message will indicate the cause of error.

Maxima integrate was run using SageMath with the following settings set by default

'besselexpand : true' 
'display2d : false' 
'domain : complex' 
'keepfloat : true' 
'load(to_poly_solve)' 
'load(simplify_sum)' 
'load(abs_integrate)' 'load(diag)'
 

SageMath automatic loading of Maxima abs_integrate was found to cause some problems. So the following code was added to disable this effect.

 from sage.interfaces.maxima_lib import maxima_lib 
 maxima_lib.set('extra_definite_integration_methods', '[]') 
 maxima_lib.set('extra_integration_methods', '[]')
 

See https://ask.sagemath.org/question/43088/integrate-results-that-are-different-from-using-maxima/ for reference.

1.14.2 Important note about FriCAS result

There were few integrals which failed due to SageMath interface and not because FriCAS system could not do the integration.

These will fail With error Exception raised: NotImplementedError.

The number of such cases seems to be very small. About 1 or 2 percent of all integrals. These can be identified by looking at the exception message given in the result.

1.14.3 Important note about finding leaf size of antiderivative

For Mathematica, Rubi, and Maple, the builtin system function LeafSize was used to find the leaf size of each antiderivative.

The other CAS systems (SageMath and Sympy) do not have special builtin function for this purpose at this time. Therefore the leaf size for Fricas and Sympy antiderivative was determined using the following function, thanks to user slelievre at https://ask.sagemath.org/question/57123/could-we-have-a-leaf_count-function-in-base-sagemath/

def tree_size(expr): 
    r""" 
    Return the tree size of this expression. 
    """ 
    if expr not in SR: 
        # deal with lists, tuples, vectors 
        return 1 + sum(tree_size(a) for a in expr) 
    expr = SR(expr) 
    x, aa = expr.operator(), expr.operands() 
    if x is None: 
        return 1 
    else: 
        return 1 + sum(tree_size(a) for a in aa)
 

For Sympy, which was called directly from Python, the following code was used to obtain the leafsize of its result

try: 
  # 1.7 is a fudge factor since it is low side from actual leaf count 
  leafCount = round(1.7*count_ops(anti)) 
 
  except Exception as ee: 
         leafCount =1
 

1.14.4 Important note about Mupad results

Matlab’s symbolic toolbox does not have a leaf count function to measure the size of the antiderivative. Maple was used to determine the leaf size of Mupad output by post processing Mupad result.

Currently no grading of the antiderivative for Mupad is implemented. If it can integrate the problem, it was assigned a B grade automatically as a placeholder. In the future, when grading function is implemented for Mupad, the tests will be rerun again.

The following is an example of using Matlab’s symbolic toolbox (Mupad) to solve an integral

integrand = evalin(symengine,'cos(x)*sin(x)') 
the_variable = evalin(symengine,'x') 
anti = int(integrand,the_variable)
 

Which gives sin(x)^2/2

1.15 Design of the test system

The following diagram gives a high level view of the current test build system.