3.1.13 \(\int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx\) [13]

3.1.13.1 Optimal result
3.1.13.2 Mathematica [B] (verified)
3.1.13.3 Rubi [A] (verified)
3.1.13.4 Maple [F]
3.1.13.5 Fricas [B] (verification not implemented)
3.1.13.6 Sympy [F]
3.1.13.7 Maxima [F]
3.1.13.8 Giac [F]
3.1.13.9 Mupad [F(-1)]

3.1.13.1 Optimal result

Integrand size = 32, antiderivative size = 81 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=-\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {1+i x}{\sqrt {1-i} \sqrt {1-i x^2}}\right )-\frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {1-i x}{\sqrt {1+i} \sqrt {1+i x^2}}\right ) \]

output
-1/2*arctanh((1+I*x)/(1-I)^(1/2)/(1-I*x^2)^(1/2))*(1-I)^(1/2)-1/2*arctanh( 
(1-I*x)/(1+I)^(1/2)/(1+I*x^2)^(1/2))*(1+I)^(1/2)
 
3.1.13.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(205\) vs. \(2(81)=162\).

Time = 1.07 (sec) , antiderivative size = 205, normalized size of antiderivative = 2.53 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\frac {\sqrt {-1+\sqrt {2}} \left (\arctan \left (\sqrt {1+\sqrt {2}} \sqrt {x^2+\sqrt {1+x^4}}\right )-\arctan \left (\frac {\sqrt {2 \left (-1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )\right )-\sqrt {1+\sqrt {2}} \text {arctanh}\left (\sqrt {-1+\sqrt {2}} \sqrt {x^2+\sqrt {1+x^4}}\right )+\sqrt {1+\sqrt {2}} \text {arctanh}\left (\frac {\sqrt {2 \left (1+\sqrt {2}\right )} x \sqrt {x^2+\sqrt {1+x^4}}}{1+x^2+\sqrt {1+x^4}}\right )}{\sqrt {2}} \]

input
Integrate[Sqrt[x^2 + Sqrt[1 + x^4]]/((1 + x)*Sqrt[1 + x^4]),x]
 
output
(Sqrt[-1 + Sqrt[2]]*(ArcTan[Sqrt[1 + Sqrt[2]]*Sqrt[x^2 + Sqrt[1 + x^4]]] - 
 ArcTan[(Sqrt[2*(-1 + Sqrt[2])]*x*Sqrt[x^2 + Sqrt[1 + x^4]])/(1 + x^2 + Sq 
rt[1 + x^4])]) - Sqrt[1 + Sqrt[2]]*ArcTanh[Sqrt[-1 + Sqrt[2]]*Sqrt[x^2 + S 
qrt[1 + x^4]]] + Sqrt[1 + Sqrt[2]]*ArcTanh[(Sqrt[2*(1 + Sqrt[2])]*x*Sqrt[x 
^2 + Sqrt[1 + x^4]])/(1 + x^2 + Sqrt[1 + x^4])])/Sqrt[2]
 
3.1.13.3 Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {2558, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{(x+1) \sqrt {x^4+1}} \, dx\)

\(\Big \downarrow \) 2558

\(\displaystyle \left (\frac {1}{2}-\frac {i}{2}\right ) \int \frac {1}{(x+1) \sqrt {1-i x^2}}dx+\left (\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(x+1) \sqrt {i x^2+1}}dx\)

\(\Big \downarrow \) 488

\(\displaystyle \left (-\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(1-i)-\frac {(i x+1)^2}{1-i x^2}}d\frac {i x+1}{\sqrt {1-i x^2}}-\left (\frac {1}{2}+\frac {i}{2}\right ) \int \frac {1}{(1+i)-\frac {(1-i x)^2}{i x^2+1}}d\frac {1-i x}{\sqrt {i x^2+1}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {1}{2} \sqrt {1-i} \text {arctanh}\left (\frac {1+i x}{\sqrt {1-i} \sqrt {1-i x^2}}\right )-\frac {1}{2} \sqrt {1+i} \text {arctanh}\left (\frac {1-i x}{\sqrt {1+i} \sqrt {1+i x^2}}\right )\)

input
Int[Sqrt[x^2 + Sqrt[1 + x^4]]/((1 + x)*Sqrt[1 + x^4]),x]
 
output
-1/2*(Sqrt[1 - I]*ArcTanh[(1 + I*x)/(Sqrt[1 - I]*Sqrt[1 - I*x^2])]) - (Sqr 
t[1 + I]*ArcTanh[(1 - I*x)/(Sqrt[1 + I]*Sqrt[1 + I*x^2])])/2
 

3.1.13.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 2558
Int[(((c_.) + (d_.)*(x_))^(m_.)*Sqrt[(b_.)*(x_)^2 + Sqrt[(a_) + (e_.)*(x_)^ 
4]])/Sqrt[(a_) + (e_.)*(x_)^4], x_Symbol] :> Simp[(1 - I)/2   Int[(c + d*x) 
^m/Sqrt[Sqrt[a] - I*b*x^2], x], x] + Simp[(1 + I)/2   Int[(c + d*x)^m/Sqrt[ 
Sqrt[a] + I*b*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[e, b^2] && G 
tQ[a, 0]
 
3.1.13.4 Maple [F]

\[\int \frac {\sqrt {x^{2}+\sqrt {x^{4}+1}}}{\left (1+x \right ) \sqrt {x^{4}+1}}d x\]

input
int((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x)
 
output
int((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x)
 
3.1.13.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 504 vs. \(2 (49) = 98\).

Time = 3.27 (sec) , antiderivative size = 504, normalized size of antiderivative = 6.22 \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\frac {1}{8} \, \sqrt {-2 \, \sqrt {2} + 2} \log \left (-\frac {\sqrt {x^{4} + 1} {\left (\sqrt {2} + 2\right )} \sqrt {-2 \, \sqrt {2} + 2} + {\left (2 \, x^{3} + \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} - \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} + 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} - {\left (x^{2} + \sqrt {2} {\left (x^{2} + 1\right )} + 1\right )} \sqrt {-2 \, \sqrt {2} + 2}}{x^{2} + 2 \, x + 1}\right ) - \frac {1}{8} \, \sqrt {-2 \, \sqrt {2} + 2} \log \left (\frac {\sqrt {x^{4} + 1} {\left (\sqrt {2} + 2\right )} \sqrt {-2 \, \sqrt {2} + 2} - {\left (2 \, x^{3} + \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} - \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} + 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} - {\left (x^{2} + \sqrt {2} {\left (x^{2} + 1\right )} + 1\right )} \sqrt {-2 \, \sqrt {2} + 2}}{x^{2} + 2 \, x + 1}\right ) - \frac {1}{8} \, \sqrt {2 \, \sqrt {2} + 2} \log \left (-\frac {{\left (2 \, x^{3} - \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} - 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} + {\left (x^{2} - \sqrt {2} {\left (x^{2} + 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 2\right )} + 1\right )} \sqrt {2 \, \sqrt {2} + 2}}{x^{2} + 2 \, x + 1}\right ) + \frac {1}{8} \, \sqrt {2 \, \sqrt {2} + 2} \log \left (-\frac {{\left (2 \, x^{3} - \sqrt {2} {\left (x^{3} - x^{2} - x - 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} {\left (x - 1\right )} - 2 \, x\right )} - 2\right )} \sqrt {x^{2} + \sqrt {x^{4} + 1}} - {\left (x^{2} - \sqrt {2} {\left (x^{2} + 1\right )} + \sqrt {x^{4} + 1} {\left (\sqrt {2} - 2\right )} + 1\right )} \sqrt {2 \, \sqrt {2} + 2}}{x^{2} + 2 \, x + 1}\right ) \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="fric 
as")
 
output
1/8*sqrt(-2*sqrt(2) + 2)*log(-(sqrt(x^4 + 1)*(sqrt(2) + 2)*sqrt(-2*sqrt(2) 
 + 2) + (2*x^3 + sqrt(2)*(x^3 - x^2 - x - 1) - sqrt(x^4 + 1)*(sqrt(2)*(x - 
 1) + 2*x) - 2)*sqrt(x^2 + sqrt(x^4 + 1)) - (x^2 + sqrt(2)*(x^2 + 1) + 1)* 
sqrt(-2*sqrt(2) + 2))/(x^2 + 2*x + 1)) - 1/8*sqrt(-2*sqrt(2) + 2)*log((sqr 
t(x^4 + 1)*(sqrt(2) + 2)*sqrt(-2*sqrt(2) + 2) - (2*x^3 + sqrt(2)*(x^3 - x^ 
2 - x - 1) - sqrt(x^4 + 1)*(sqrt(2)*(x - 1) + 2*x) - 2)*sqrt(x^2 + sqrt(x^ 
4 + 1)) - (x^2 + sqrt(2)*(x^2 + 1) + 1)*sqrt(-2*sqrt(2) + 2))/(x^2 + 2*x + 
 1)) - 1/8*sqrt(2*sqrt(2) + 2)*log(-((2*x^3 - sqrt(2)*(x^3 - x^2 - x - 1) 
+ sqrt(x^4 + 1)*(sqrt(2)*(x - 1) - 2*x) - 2)*sqrt(x^2 + sqrt(x^4 + 1)) + ( 
x^2 - sqrt(2)*(x^2 + 1) + sqrt(x^4 + 1)*(sqrt(2) - 2) + 1)*sqrt(2*sqrt(2) 
+ 2))/(x^2 + 2*x + 1)) + 1/8*sqrt(2*sqrt(2) + 2)*log(-((2*x^3 - sqrt(2)*(x 
^3 - x^2 - x - 1) + sqrt(x^4 + 1)*(sqrt(2)*(x - 1) - 2*x) - 2)*sqrt(x^2 + 
sqrt(x^4 + 1)) - (x^2 - sqrt(2)*(x^2 + 1) + sqrt(x^4 + 1)*(sqrt(2) - 2) + 
1)*sqrt(2*sqrt(2) + 2))/(x^2 + 2*x + 1))
 
3.1.13.6 Sympy [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\left (x + 1\right ) \sqrt {x^{4} + 1}}\, dx \]

input
integrate((x**2+(x**4+1)**(1/2))**(1/2)/(1+x)/(x**4+1)**(1/2),x)
 
output
Integral(sqrt(x**2 + sqrt(x**4 + 1))/((x + 1)*sqrt(x**4 + 1)), x)
 
3.1.13.7 Maxima [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1} {\left (x + 1\right )}} \,d x } \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="maxi 
ma")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))/(sqrt(x^4 + 1)*(x + 1)), x)
 
3.1.13.8 Giac [F]

\[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int { \frac {\sqrt {x^{2} + \sqrt {x^{4} + 1}}}{\sqrt {x^{4} + 1} {\left (x + 1\right )}} \,d x } \]

input
integrate((x^2+(x^4+1)^(1/2))^(1/2)/(1+x)/(x^4+1)^(1/2),x, algorithm="giac 
")
 
output
integrate(sqrt(x^2 + sqrt(x^4 + 1))/(sqrt(x^4 + 1)*(x + 1)), x)
 
3.1.13.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {x^2+\sqrt {1+x^4}}}{(1+x) \sqrt {1+x^4}} \, dx=\int \frac {\sqrt {\sqrt {x^4+1}+x^2}}{\sqrt {x^4+1}\,\left (x+1\right )} \,d x \]

input
int(((x^4 + 1)^(1/2) + x^2)^(1/2)/((x^4 + 1)^(1/2)*(x + 1)),x)
 
output
int(((x^4 + 1)^(1/2) + x^2)^(1/2)/((x^4 + 1)^(1/2)*(x + 1)), x)