3.1.52 \(\int \frac {-a-\sqrt {1+a^2}+x}{(-a+\sqrt {1+a^2}+x) \sqrt {(-a+x) (1+x^2)}} \, dx\) [52]

3.1.52.1 Optimal result
3.1.52.2 Mathematica [A] (verified)
3.1.52.3 Rubi [C] (verified)
3.1.52.4 Maple [C] (warning: unable to verify)
3.1.52.5 Fricas [A] (verification not implemented)
3.1.52.6 Sympy [F(-1)]
3.1.52.7 Maxima [F]
3.1.52.8 Giac [F]
3.1.52.9 Mupad [F(-1)]

3.1.52.1 Optimal result

Integrand size = 48, antiderivative size = 66 \[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=-\sqrt {2} \sqrt {a+\sqrt {1+a^2}} \arctan \left (\frac {\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} (-a+x)}{\sqrt {(-a+x) \left (1+x^2\right )}}\right ) \]

output
-arctan((-a+x)*2^(1/2)*(-a+(a^2+1)^(1/2))^(1/2)/((-a+x)*(x^2+1))^(1/2))*2^ 
(1/2)*(a+(a^2+1)^(1/2))^(1/2)
 
3.1.52.2 Mathematica [A] (verified)

Time = 2.11 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.50 \[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=-\frac {\sqrt {2} \sqrt {-a+x} \sqrt {1+x^2} \arctan \left (\frac {\sqrt {2} \sqrt {-a+\sqrt {1+a^2}} \sqrt {-a+x}}{\sqrt {1+x^2}}\right )}{\sqrt {-a+\sqrt {1+a^2}} \sqrt {(-a+x) \left (1+x^2\right )}} \]

input
Integrate[(-a - Sqrt[1 + a^2] + x)/((-a + Sqrt[1 + a^2] + x)*Sqrt[(-a + x) 
*(1 + x^2)]),x]
 
output
-((Sqrt[2]*Sqrt[-a + x]*Sqrt[1 + x^2]*ArcTan[(Sqrt[2]*Sqrt[-a + Sqrt[1 + a 
^2]]*Sqrt[-a + x])/Sqrt[1 + x^2]])/(Sqrt[-a + Sqrt[1 + a^2]]*Sqrt[(-a + x) 
*(1 + x^2)]))
 
3.1.52.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 1.22 (sec) , antiderivative size = 429, normalized size of antiderivative = 6.50, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {7270, 2349, 510, 729, 25, 1416, 1534, 1416, 2212, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-\sqrt {a^2+1}-a+x}{\left (\sqrt {a^2+1}-a+x\right ) \sqrt {\left (x^2+1\right ) (x-a)}} \, dx\)

\(\Big \downarrow \) 7270

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \int \frac {a-x+\sqrt {a^2+1}}{\left (a-x-\sqrt {a^2+1}\right ) \sqrt {x-a} \sqrt {x^2+1}}dx}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 2349

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (2 \sqrt {a^2+1} \int \frac {1}{\left (a-x-\sqrt {a^2+1}\right ) \sqrt {x-a} \sqrt {x^2+1}}dx+\int \frac {1}{\sqrt {x-a} \sqrt {x^2+1}}dx\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 510

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (2 \sqrt {a^2+1} \int \frac {1}{\left (a-x-\sqrt {a^2+1}\right ) \sqrt {x-a} \sqrt {x^2+1}}dx+2 \int \frac {1}{\sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 729

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (2 \int \frac {1}{\sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}+4 \sqrt {a^2+1} \int -\frac {1}{\left (-a+x+\sqrt {a^2+1}\right ) \sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (2 \int \frac {1}{\sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}-4 \sqrt {a^2+1} \int \frac {1}{\left (-a+x+\sqrt {a^2+1}\right ) \sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (\frac {\sqrt [4]{a^2+1} \left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}-4 \sqrt {a^2+1} \int \frac {1}{\left (-a+x+\sqrt {a^2+1}\right ) \sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 1534

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (4 \sqrt {a^2+1} \left (-\frac {\int \frac {1}{\sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}}{2 \sqrt {a^2+1}}-\frac {\int \frac {a-x+\sqrt {a^2+1}}{\left (-a+x+\sqrt {a^2+1}\right ) \sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}}{2 \sqrt {a^2+1}}\right )+\frac {\sqrt [4]{a^2+1} \left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (4 \sqrt {a^2+1} \left (-\frac {\int \frac {a-x+\sqrt {a^2+1}}{\left (-a+x+\sqrt {a^2+1}\right ) \sqrt {a^2+2 (x-a) a+(x-a)^2+1}}d\sqrt {x-a}}{2 \sqrt {a^2+1}}-\frac {\left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{4 \sqrt [4]{a^2+1} \sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )+\frac {\sqrt [4]{a^2+1} \left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 2212

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (4 \sqrt {a^2+1} \left (-\frac {1}{2} \int \frac {1}{\sqrt {a^2+1}-2 \sqrt {a^2+1} \left (a-\sqrt {a^2+1}\right ) (x-a)}d\frac {\sqrt {x-a}}{\sqrt {a^2+2 (x-a) a+(x-a)^2+1}}-\frac {\left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{4 \sqrt [4]{a^2+1} \sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )+\frac {\sqrt [4]{a^2+1} \left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\sqrt {x^2+1} \sqrt {x-a} \left (4 \sqrt {a^2+1} \left (-\frac {\left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{4 \sqrt [4]{a^2+1} \sqrt {a^2+2 a (x-a)+(x-a)^2+1}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {a-\sqrt {a^2+1}} \sqrt {x-a}}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )}{2 \sqrt {2} \sqrt {a^2+1} \sqrt {a-\sqrt {a^2+1}}}\right )+\frac {\sqrt [4]{a^2+1} \left (\frac {x-a}{\sqrt {a^2+1}}+1\right ) \sqrt {\frac {a^2+2 a (x-a)+(x-a)^2+1}{\left (a^2+1\right ) \left (\frac {x-a}{\sqrt {a^2+1}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {x-a}}{\sqrt [4]{a^2+1}}\right ),\frac {1}{2} \left (1-\frac {a}{\sqrt {a^2+1}}\right )\right )}{\sqrt {a^2+2 a (x-a)+(x-a)^2+1}}\right )}{\sqrt {-\left (\left (x^2+1\right ) (a-x)\right )}}\)

input
Int[(-a - Sqrt[1 + a^2] + x)/((-a + Sqrt[1 + a^2] + x)*Sqrt[(-a + x)*(1 + 
x^2)]),x]
 
output
(Sqrt[-a + x]*Sqrt[1 + x^2]*(((1 + a^2)^(1/4)*(1 + (-a + x)/Sqrt[1 + a^2]) 
*Sqrt[(1 + a^2 + 2*a*(-a + x) + (-a + x)^2)/((1 + a^2)*(1 + (-a + x)/Sqrt[ 
1 + a^2])^2)]*EllipticF[2*ArcTan[Sqrt[-a + x]/(1 + a^2)^(1/4)], (1 - a/Sqr 
t[1 + a^2])/2])/Sqrt[1 + a^2 + 2*a*(-a + x) + (-a + x)^2] + 4*Sqrt[1 + a^2 
]*(-1/2*ArcTanh[(Sqrt[2]*Sqrt[a - Sqrt[1 + a^2]]*Sqrt[-a + x])/Sqrt[1 + a^ 
2 + 2*a*(-a + x) + (-a + x)^2]]/(Sqrt[2]*Sqrt[1 + a^2]*Sqrt[a - Sqrt[1 + a 
^2]]) - ((1 + (-a + x)/Sqrt[1 + a^2])*Sqrt[(1 + a^2 + 2*a*(-a + x) + (-a + 
 x)^2)/((1 + a^2)*(1 + (-a + x)/Sqrt[1 + a^2])^2)]*EllipticF[2*ArcTan[Sqrt 
[-a + x]/(1 + a^2)^(1/4)], (1 - a/Sqrt[1 + a^2])/2])/(4*(1 + a^2)^(1/4)*Sq 
rt[1 + a^2 + 2*a*(-a + x) + (-a + x)^2]))))/Sqrt[-((a - x)*(1 + x^2))]
 

3.1.52.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 510
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Sim 
p[2/d   Subst[Int[1/Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2 
)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && PosQ[b/a]
 

rule 729
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))*Sqrt[(a_) + (b_.)*(x_) 
^2]), x_Symbol] :> Simp[2   Subst[Int[1/((d*e - c*f + f*x^2)*Sqrt[(b*c^2 + 
a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)]), x], x, Sqrt[c + d*x]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1534
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_S 
ymbol] :> Simp[1/(2*d)   Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[1/(2* 
d)   Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ 
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0 
] && EqQ[c*d^2 - a*e^2, 0]
 

rule 2212
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + 
 (c_.)*(x_)^4]), x_Symbol] :> Simp[A   Subst[Int[1/(d - (b*d - 2*a*e)*x^2), 
 x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B}, x] & 
& EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]
 

rule 2349
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_. 
)*(x_)^2)^(p_.), x_Symbol] :> Int[PolynomialQuotient[Px, c + d*x, x]*(c + d 
*x)^(m + 1)*(e + f*x)^n*(a + b*x^2)^p, x] + Simp[PolynomialRemainder[Px, c 
+ d*x, x]   Int[(c + d*x)^m*(e + f*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, 
b, c, d, e, f, n, p}, x] && PolynomialQ[Px, x] && LtQ[m, 0] &&  !IntegerQ[n 
] && IntegersQ[2*m, 2*n, 2*p]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 
3.1.52.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 1.60 (sec) , antiderivative size = 787, normalized size of antiderivative = 11.92

method result size
default \(\frac {2 i \sqrt {-i \left (x +i\right )}\, \sqrt {\frac {-a +x}{-i-a}}\, \sqrt {i \left (x -i\right )}\, F\left (\frac {\sqrt {2}\, \sqrt {-i \left (x +i\right )}}{2}, \sqrt {2}\, \sqrt {-\frac {i}{-i-a}}\right )}{\sqrt {-a \,x^{2}+x^{3}-a +x}}-\frac {2 \sqrt {a^{2}+1}\, \left (2 a x -x^{2}+1\right ) \sqrt {-\left (a -x \right ) \left (x^{2}+1\right ) \left (a^{2}+1\right )}\, \left (-\frac {i \sqrt {a^{2}+1}\, \sqrt {-i x +1}\, \sqrt {-\frac {a}{-i-a}+\frac {x}{-i-a}}\, \sqrt {i x +1}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {-i \left (x +i\right )}}{2}, -\frac {2 i}{-i-a -\sqrt {a^{2}+1}}, \sqrt {2}\, \sqrt {-\frac {i}{-i-a}}\right )}{\sqrt {-a^{3} x^{2}+a^{2} x^{3}-a^{3}+a^{2} x -a \,x^{2}+x^{3}-a +x}\, \left (-i-a -\sqrt {a^{2}+1}\right )}+\frac {i \sqrt {a^{2}+1}\, \sqrt {-i x +1}\, \sqrt {-\frac {a}{-i-a}+\frac {x}{-i-a}}\, \sqrt {i x +1}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {-i \left (x +i\right )}}{2}, -\frac {2 i}{-i-a +\sqrt {a^{2}+1}}, \sqrt {2}\, \sqrt {-\frac {i}{-i-a}}\right )}{\sqrt {-a^{3} x^{2}+a^{2} x^{3}-a^{3}+a^{2} x -a \,x^{2}+x^{3}-a +x}\, \left (-i-a +\sqrt {a^{2}+1}\right )}+\frac {i \sqrt {-i x +1}\, \sqrt {-\frac {a}{-i-a}+\frac {x}{-i-a}}\, \sqrt {i x +1}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {-i \left (x +i\right )}}{2}, -\frac {2 i}{-i-a -\sqrt {a^{2}+1}}, \sqrt {2}\, \sqrt {-\frac {i}{-i-a}}\right )}{\sqrt {-a \,x^{2}+x^{3}-a +x}\, \left (-i-a -\sqrt {a^{2}+1}\right )}+\frac {i \sqrt {-i x +1}\, \sqrt {-\frac {a}{-i-a}+\frac {x}{-i-a}}\, \sqrt {i x +1}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {-i \left (x +i\right )}}{2}, -\frac {2 i}{-i-a +\sqrt {a^{2}+1}}, \sqrt {2}\, \sqrt {-\frac {i}{-i-a}}\right )}{\sqrt {-a \,x^{2}+x^{3}-a +x}\, \left (-i-a +\sqrt {a^{2}+1}\right )}\right )}{\left (-a +x +\sqrt {a^{2}+1}\right ) \left (\sqrt {-\left (a -x \right ) \left (x^{2}+1\right )}\, a^{2}+\sqrt {-\left (a -x \right ) \left (x^{2}+1\right ) \left (a^{2}+1\right )}\, a -\sqrt {-\left (a -x \right ) \left (x^{2}+1\right ) \left (a^{2}+1\right )}\, x +\sqrt {-\left (a -x \right ) \left (x^{2}+1\right )}\right )}\) \(787\)
elliptic \(\text {Expression too large to display}\) \(1463\)

input
int((-a+x-(a^2+1)^(1/2))/(-a+x+(a^2+1)^(1/2))/((-a+x)*(x^2+1))^(1/2),x,met 
hod=_RETURNVERBOSE)
 
output
2*I*(-I*(x+I))^(1/2)*((-a+x)/(-I-a))^(1/2)*(I*(x-I))^(1/2)/(-a*x^2+x^3-a+x 
)^(1/2)*EllipticF(1/2*2^(1/2)*(-I*(x+I))^(1/2),2^(1/2)*(-I/(-I-a))^(1/2))- 
2*(a^2+1)^(1/2)*(2*a*x-x^2+1)*(-(a-x)*(x^2+1)*(a^2+1))^(1/2)/(-a+x+(a^2+1) 
^(1/2))/((-(a-x)*(x^2+1))^(1/2)*a^2+(-(a-x)*(x^2+1)*(a^2+1))^(1/2)*a-(-(a- 
x)*(x^2+1)*(a^2+1))^(1/2)*x+(-(a-x)*(x^2+1))^(1/2))*(-I*(a^2+1)^(1/2)*(1-I 
*x)^(1/2)*(-1/(-I-a)*a+1/(-I-a)*x)^(1/2)*(1+I*x)^(1/2)/(-a^3*x^2+a^2*x^3-a 
^3+a^2*x-a*x^2+x^3-a+x)^(1/2)/(-I-a-(a^2+1)^(1/2))*EllipticPi(1/2*2^(1/2)* 
(-I*(x+I))^(1/2),-2*I/(-I-a-(a^2+1)^(1/2)),2^(1/2)*(-I/(-I-a))^(1/2))+I*(a 
^2+1)^(1/2)*(1-I*x)^(1/2)*(-1/(-I-a)*a+1/(-I-a)*x)^(1/2)*(1+I*x)^(1/2)/(-a 
^3*x^2+a^2*x^3-a^3+a^2*x-a*x^2+x^3-a+x)^(1/2)/(-I-a+(a^2+1)^(1/2))*Ellipti 
cPi(1/2*2^(1/2)*(-I*(x+I))^(1/2),-2*I/(-I-a+(a^2+1)^(1/2)),2^(1/2)*(-I/(-I 
-a))^(1/2))+I*(1-I*x)^(1/2)*(-1/(-I-a)*a+1/(-I-a)*x)^(1/2)*(1+I*x)^(1/2)/( 
-a*x^2+x^3-a+x)^(1/2)/(-I-a-(a^2+1)^(1/2))*EllipticPi(1/2*2^(1/2)*(-I*(x+I 
))^(1/2),-2*I/(-I-a-(a^2+1)^(1/2)),2^(1/2)*(-I/(-I-a))^(1/2))+I*(1-I*x)^(1 
/2)*(-1/(-I-a)*a+1/(-I-a)*x)^(1/2)*(1+I*x)^(1/2)/(-a*x^2+x^3-a+x)^(1/2)/(- 
I-a+(a^2+1)^(1/2))*EllipticPi(1/2*2^(1/2)*(-I*(x+I))^(1/2),-2*I/(-I-a+(a^2 
+1)^(1/2)),2^(1/2)*(-I/(-I-a))^(1/2)))
 
3.1.52.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 546, normalized size of antiderivative = 8.27 \[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=\left [\frac {1}{4} \, \sqrt {-2 \, a - 2 \, \sqrt {a^{2} + 1}} \log \left (-\frac {8 \, a x^{7} + x^{8} + 4 \, {\left (2 \, a^{2} + 15\right )} x^{6} - 8 \, {\left (4 \, a^{3} + 15 \, a\right )} x^{5} + 2 \, {\left (8 \, a^{4} + 80 \, a^{2} + 67\right )} x^{4} + 64 \, a^{4} - 8 \, {\left (20 \, a^{3} + 37 \, a\right )} x^{3} + 4 \, {\left (16 \, a^{4} + 74 \, a^{2} + 15\right )} x^{2} + 48 \, a^{2} - 4 \, {\left (a x^{6} + 2 \, {\left (2 \, a^{2} + 3\right )} x^{5} - {\left (4 \, a^{3} - a\right )} x^{4} - 8 \, a^{3} - {\left (4 \, a^{3} + 29 \, a\right )} x^{2} + 20 \, x^{3} + 2 \, {\left (10 \, a^{2} + 3\right )} x - {\left (4 \, a x^{5} + x^{6} - {\left (4 \, a^{2} - 15\right )} x^{4} - 16 \, a x^{3} + {\left (4 \, a^{2} + 15\right )} x^{2} + 8 \, a^{2} - 20 \, a x + 1\right )} \sqrt {a^{2} + 1} - 5 \, a\right )} \sqrt {-a x^{2} + x^{3} - a + x} \sqrt {-2 \, a - 2 \, \sqrt {a^{2} + 1}} - 8 \, {\left (24 \, a^{3} + 13 \, a\right )} x + 16 \, {\left (a x^{6} - x^{7} + 15 \, a x^{4} - 7 \, x^{5} - {\left (12 \, a^{2} + 7\right )} x^{3} + 4 \, a^{3} + {\left (4 \, a^{3} + 15 \, a\right )} x^{2} - {\left (12 \, a^{2} + 1\right )} x + a\right )} \sqrt {a^{2} + 1} + 1}{8 \, a x^{7} - x^{8} - 4 \, {\left (6 \, a^{2} - 1\right )} x^{6} + 8 \, {\left (4 \, a^{3} - 3 \, a\right )} x^{5} - 2 \, {\left (8 \, a^{4} - 24 \, a^{2} + 3\right )} x^{4} - 8 \, {\left (4 \, a^{3} - 3 \, a\right )} x^{3} - 4 \, {\left (6 \, a^{2} - 1\right )} x^{2} - 8 \, a x - 1}\right ), -\frac {1}{2} \, \sqrt {2 \, a + 2 \, \sqrt {a^{2} + 1}} \arctan \left (-\frac {\sqrt {-a x^{2} + x^{3} - a + x} {\left (2 \, a^{2} - 2 \, a x - x^{2} - 2 \, \sqrt {a^{2} + 1} {\left (a - x\right )} - 1\right )} \sqrt {2 \, a + 2 \, \sqrt {a^{2} + 1}}}{4 \, {\left (a x^{2} - x^{3} + a - x\right )}}\right )\right ] \]

input
integrate((-a+x-(a^2+1)^(1/2))/(-a+x+(a^2+1)^(1/2))/((-a+x)*(x^2+1))^(1/2) 
,x, algorithm="fricas")
 
output
[1/4*sqrt(-2*a - 2*sqrt(a^2 + 1))*log(-(8*a*x^7 + x^8 + 4*(2*a^2 + 15)*x^6 
 - 8*(4*a^3 + 15*a)*x^5 + 2*(8*a^4 + 80*a^2 + 67)*x^4 + 64*a^4 - 8*(20*a^3 
 + 37*a)*x^3 + 4*(16*a^4 + 74*a^2 + 15)*x^2 + 48*a^2 - 4*(a*x^6 + 2*(2*a^2 
 + 3)*x^5 - (4*a^3 - a)*x^4 - 8*a^3 - (4*a^3 + 29*a)*x^2 + 20*x^3 + 2*(10* 
a^2 + 3)*x - (4*a*x^5 + x^6 - (4*a^2 - 15)*x^4 - 16*a*x^3 + (4*a^2 + 15)*x 
^2 + 8*a^2 - 20*a*x + 1)*sqrt(a^2 + 1) - 5*a)*sqrt(-a*x^2 + x^3 - a + x)*s 
qrt(-2*a - 2*sqrt(a^2 + 1)) - 8*(24*a^3 + 13*a)*x + 16*(a*x^6 - x^7 + 15*a 
*x^4 - 7*x^5 - (12*a^2 + 7)*x^3 + 4*a^3 + (4*a^3 + 15*a)*x^2 - (12*a^2 + 1 
)*x + a)*sqrt(a^2 + 1) + 1)/(8*a*x^7 - x^8 - 4*(6*a^2 - 1)*x^6 + 8*(4*a^3 
- 3*a)*x^5 - 2*(8*a^4 - 24*a^2 + 3)*x^4 - 8*(4*a^3 - 3*a)*x^3 - 4*(6*a^2 - 
 1)*x^2 - 8*a*x - 1)), -1/2*sqrt(2*a + 2*sqrt(a^2 + 1))*arctan(-1/4*sqrt(- 
a*x^2 + x^3 - a + x)*(2*a^2 - 2*a*x - x^2 - 2*sqrt(a^2 + 1)*(a - x) - 1)*s 
qrt(2*a + 2*sqrt(a^2 + 1))/(a*x^2 - x^3 + a - x))]
 
3.1.52.6 Sympy [F(-1)]

Timed out. \[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=\text {Timed out} \]

input
integrate((-a+x-(a**2+1)**(1/2))/(-a+x+(a**2+1)**(1/2))/((-a+x)*(x**2+1))* 
*(1/2),x)
 
output
Timed out
 
3.1.52.7 Maxima [F]

\[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=\int { \frac {a - x + \sqrt {a^{2} + 1}}{\sqrt {-{\left (x^{2} + 1\right )} {\left (a - x\right )}} {\left (a - x - \sqrt {a^{2} + 1}\right )}} \,d x } \]

input
integrate((-a+x-(a^2+1)^(1/2))/(-a+x+(a^2+1)^(1/2))/((-a+x)*(x^2+1))^(1/2) 
,x, algorithm="maxima")
 
output
integrate((a - x + sqrt(a^2 + 1))/(sqrt(-(x^2 + 1)*(a - x))*(a - x - sqrt( 
a^2 + 1))), x)
 
3.1.52.8 Giac [F]

\[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=\int { \frac {a - x + \sqrt {a^{2} + 1}}{\sqrt {-{\left (x^{2} + 1\right )} {\left (a - x\right )}} {\left (a - x - \sqrt {a^{2} + 1}\right )}} \,d x } \]

input
integrate((-a+x-(a^2+1)^(1/2))/(-a+x+(a^2+1)^(1/2))/((-a+x)*(x^2+1))^(1/2) 
,x, algorithm="giac")
 
output
integrate((a - x + sqrt(a^2 + 1))/(sqrt(-(x^2 + 1)*(a - x))*(a - x - sqrt( 
a^2 + 1))), x)
 
3.1.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {-a-\sqrt {1+a^2}+x}{\left (-a+\sqrt {1+a^2}+x\right ) \sqrt {(-a+x) \left (1+x^2\right )}} \, dx=\int -\frac {a-x+\sqrt {a^2+1}}{\sqrt {-\left (x^2+1\right )\,\left (a-x\right )}\,\left (x-a+\sqrt {a^2+1}\right )} \,d x \]

input
int(-(a - x + (a^2 + 1)^(1/2))/((-(x^2 + 1)*(a - x))^(1/2)*(x - a + (a^2 + 
 1)^(1/2))),x)
 
output
int(-(a - x + (a^2 + 1)^(1/2))/((-(x^2 + 1)*(a - x))^(1/2)*(x - a + (a^2 + 
 1)^(1/2))), x)