3.1.59 \(\int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx\) [59]

3.1.59.1 Optimal result
3.1.59.2 Mathematica [F]
3.1.59.3 Rubi [A] (verified)
3.1.59.4 Maple [C] (warning: unable to verify)
3.1.59.5 Fricas [C] (verification not implemented)
3.1.59.6 Sympy [F]
3.1.59.7 Maxima [F]
3.1.59.8 Giac [F]
3.1.59.9 Mupad [F(-1)]

3.1.59.1 Optimal result

Integrand size = 22, antiderivative size = 280 \[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\frac {\sqrt {3} \arctan \left (\frac {1+\frac {2 \sqrt [3]{2} (-1+x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2^{2/3}}+\frac {\arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\arctan \left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{2^{2/3} \sqrt {3}}-\frac {\arctan \left (\frac {1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt {3}}\right )}{2^{2/3} \sqrt {3}}-\frac {\log \left (-3 (-1+x) \left (1-x+x^2\right )\right )}{2\ 2^{2/3}}+\frac {\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{2\ 2^{2/3}}+\frac {3 \log \left (-\sqrt [3]{2} (-1+x)+\sqrt [3]{1-x^3}\right )}{2\ 2^{2/3}}+\frac {1}{2} \log \left (x+\sqrt [3]{1-x^3}\right )-\frac {\log \left (\sqrt [3]{2} x+\sqrt [3]{1-x^3}\right )}{2\ 2^{2/3}} \]

output
-1/4*ln(-3*(-1+x)*(x^2-x+1))*2^(1/3)+1/4*ln(2^(1/3)-(-x^3+1)^(1/3))*2^(1/3 
)+3/4*ln(-2^(1/3)*(-1+x)+(-x^3+1)^(1/3))*2^(1/3)+1/2*ln(x+(-x^3+1)^(1/3))- 
1/4*ln(2^(1/3)*x+(-x^3+1)^(1/3))*2^(1/3)+1/3*arctan(1/3*(1-2*x/(-x^3+1)^(1 
/3))*3^(1/2))*3^(1/2)-1/6*2^(1/3)*arctan(1/3*(1-2*2^(1/3)*x/(-x^3+1)^(1/3) 
)*3^(1/2))*3^(1/2)-1/6*2^(1/3)*arctan(1/3*(1+2^(2/3)*(-x^3+1)^(1/3))*3^(1/ 
2))*3^(1/2)+1/2*arctan(1/3*(1+2*2^(1/3)*(-1+x)/(-x^3+1)^(1/3))*3^(1/2))*3^ 
(1/2)*2^(1/3)
 
3.1.59.2 Mathematica [F]

\[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx \]

input
Integrate[(1 - x^3)^(1/3)/(1 - x + x^2),x]
 
output
Integrate[(1 - x^3)^(1/3)/(1 - x + x^2), x]
 
3.1.59.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.46, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2583, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{1-x^3}}{x^2-x+1} \, dx\)

\(\Big \downarrow \) 2583

\(\displaystyle \int \left (\frac {\sqrt [3]{1-x^3} x}{x^3+1}+\frac {\sqrt [3]{1-x^3}}{x^3+1}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [3]{2} \arctan \left (\frac {1-\frac {2 \sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\arctan \left (\frac {\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1}{\sqrt {3}}\right )}{2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {1-\frac {2 x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {\sqrt [3]{2} \arctan \left (\frac {1-\frac {2 \sqrt [3]{2} x}{\sqrt [3]{1-x^3}}}{\sqrt {3}}\right )}{\sqrt {3}}+\frac {\log \left (x^3+1\right )}{3\ 2^{2/3}}+\frac {\log \left (2^{2/3}-\frac {1-x}{\sqrt [3]{1-x^3}}\right )}{3\ 2^{2/3}}-\frac {\log \left (\frac {2^{2/3} (1-x)^2}{\left (1-x^3\right )^{2/3}}-\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )}{3\ 2^{2/3}}+\frac {1}{3} \sqrt [3]{2} \log \left (\frac {\sqrt [3]{2} (1-x)}{\sqrt [3]{1-x^3}}+1\right )-\frac {\log \left (\frac {(1-x)^2}{\left (1-x^3\right )^{2/3}}+\frac {2^{2/3} (1-x)}{\sqrt [3]{1-x^3}}+2 \sqrt [3]{2}\right )}{6\ 2^{2/3}}+\frac {1}{2} \log \left (-\sqrt [3]{1-x^3}-x\right )-\frac {\log \left (-\sqrt [3]{1-x^3}-\sqrt [3]{2} x\right )}{2^{2/3}}\)

input
Int[(1 - x^3)^(1/3)/(1 - x + x^2),x]
 
output
(2^(1/3)*ArcTan[(1 - (2*2^(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]])/Sqrt[3 
] + ArcTan[(1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3))/Sqrt[3]]/(2^(2/3)*Sqrt[ 
3]) + ArcTan[(1 - (2*x)/(1 - x^3)^(1/3))/Sqrt[3]]/Sqrt[3] - (2^(1/3)*ArcTa 
n[(1 - (2*2^(1/3)*x)/(1 - x^3)^(1/3))/Sqrt[3]])/Sqrt[3] + Log[1 + x^3]/(3* 
2^(2/3)) + Log[2^(2/3) - (1 - x)/(1 - x^3)^(1/3)]/(3*2^(2/3)) - Log[1 + (2 
^(2/3)*(1 - x)^2)/(1 - x^3)^(2/3) - (2^(1/3)*(1 - x))/(1 - x^3)^(1/3)]/(3* 
2^(2/3)) + (2^(1/3)*Log[1 + (2^(1/3)*(1 - x))/(1 - x^3)^(1/3)])/3 - Log[2* 
2^(1/3) + (1 - x)^2/(1 - x^3)^(2/3) + (2^(2/3)*(1 - x))/(1 - x^3)^(1/3)]/( 
6*2^(2/3)) + Log[-x - (1 - x^3)^(1/3)]/2 - Log[-(2^(1/3)*x) - (1 - x^3)^(1 
/3)]/2^(2/3)
 

3.1.59.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2583
Int[(Px_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^3)^(p 
_.), x_Symbol] :> Simp[1/c^q   Int[ExpandIntegrand[(c^3 - d^3*x^3)^q*(a + b 
*x^3)^p, Px/(c - d*x)^q, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && Poly 
Q[Px, x] && EqQ[d^2 - c*e, 0] && ILtQ[q, 0] && RationalQ[p] && EqQ[Denomina 
tor[p], 3]
 
3.1.59.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 21.32 (sec) , antiderivative size = 1410, normalized size of antiderivative = 5.04

method result size
trager \(\text {Expression too large to display}\) \(1410\)

input
int((-x^3+1)^(1/3)/(x^2-x+1),x,method=_RETURNVERBOSE)
 
output
1/3*ln(RootOf(_Z^2+_Z+1)^2*x^3-3*RootOf(_Z^2+_Z+1)*(-x^3+1)^(2/3)*x+3*Root 
Of(_Z^2+_Z+1)*(-x^3+1)^(1/3)*x^2-2*RootOf(_Z^2+_Z+1)*x^3+x^3+RootOf(_Z^2+_ 
Z+1)-1)*RootOf(_Z^2+_Z+1)-1/3*RootOf(_Z^2+_Z+1)*ln(RootOf(_Z^2+_Z+1)^2*x^3 
+3*RootOf(_Z^2+_Z+1)*(-x^3+1)^(2/3)*x-3*RootOf(_Z^2+_Z+1)*(-x^3+1)^(1/3)*x 
^2+4*RootOf(_Z^2+_Z+1)*x^3+3*x*(-x^3+1)^(2/3)-3*x^2*(-x^3+1)^(1/3)+4*x^3-R 
ootOf(_Z^2+_Z+1)-2)-1/3*ln(RootOf(_Z^2+_Z+1)^2*x^3+3*RootOf(_Z^2+_Z+1)*(-x 
^3+1)^(2/3)*x-3*RootOf(_Z^2+_Z+1)*(-x^3+1)^(1/3)*x^2+4*RootOf(_Z^2+_Z+1)*x 
^3+3*x*(-x^3+1)^(2/3)-3*x^2*(-x^3+1)^(1/3)+4*x^3-RootOf(_Z^2+_Z+1)-2)-1/18 
*ln(-(12*(-x^3+1)^(1/3)*RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)*RootOf(_Z^2 
+_Z+1)*x^3+RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)^2*x^4-36*(-x^3+1)^(1/3)* 
RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)*RootOf(_Z^2+_Z+1)*x^2+6*(-x^3+1)^(1 
/3)*RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)*x^3+2*x^3*RootOf(_Z^3-324*RootO 
f(_Z^2+_Z+1)-162)^2+108*(-x^3+1)^(2/3)*x^2+12*(-x^3+1)^(1/3)*RootOf(_Z^3-3 
24*RootOf(_Z^2+_Z+1)-162)*RootOf(_Z^2+_Z+1)*x-18*(-x^3+1)^(1/3)*RootOf(_Z^ 
3-324*RootOf(_Z^2+_Z+1)-162)*x^2-RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)^2* 
x^2-108*x*(-x^3+1)^(2/3)+6*(-x^3+1)^(1/3)*RootOf(_Z^3-324*RootOf(_Z^2+_Z+1 
)-162)*x-2*RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)^2*x+RootOf(_Z^3-324*Root 
Of(_Z^2+_Z+1)-162)^2)/(x^2-x+1)^2)*RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)* 
RootOf(_Z^2+_Z+1)-1/18*ln(-(12*(-x^3+1)^(1/3)*RootOf(_Z^3-324*RootOf(_Z^2+ 
_Z+1)-162)*RootOf(_Z^2+_Z+1)*x^3+RootOf(_Z^3-324*RootOf(_Z^2+_Z+1)-162)...
 
3.1.59.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.35 (sec) , antiderivative size = 3880, normalized size of antiderivative = 13.86 \[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\text {Too large to display} \]

input
integrate((-x^3+1)^(1/3)/(x^2-x+1),x, algorithm="fricas")
 
output
1/72*sqrt(3)*(sqrt(-3)*(-4)^(1/6) + (-4)^(1/6))*log(3*(6*sqrt(-3)*(-4)^(1/ 
3)*(26655*x^12 - 185476*x^11 + 155872*x^10 + 361508*x^9 - 363117*x^8 - 876 
12*x^7 - 197936*x^6 + 492924*x^5 - 182367*x^4 - 39436*x^3 + 18254*x^2 + 36 
52*x - 1278) + 48*(11866*x^10 - 16425*x^9 - 125794*x^8 + 251931*x^7 - 7118 
7*x^6 - 79049*x^5 - 2745*x^4 + 52032*x^3 - 20629*x^2 - sqrt(3)*(3104*I*x^1 
0 - 43815*I*x^9 + 84520*I*x^8 + 11329*I*x^7 - 92013*I*x^6 + 5291*I*x^5 + 5 
3855*I*x^4 - 20262*I*x^3 - 2009*I*x^2 + 1278*I*x) + 2008*x)*(-x^3 + 1)^(2/ 
3) + sqrt(3)*(sqrt(-3)*(-4)^(5/6)*(31397*x^12 + 113940*x^11 - 831396*x^10 
+ 973364*x^9 - 140709*x^8 + 407484*x^7 - 1009896*x^6 + 313212*x^5 + 248121 
*x^4 - 75940*x^3 - 48198*x^2 + 19716*x - 2008) - (-4)^(5/6)*(31397*x^12 + 
113940*x^11 - 831396*x^10 + 973364*x^9 - 140709*x^8 + 407484*x^7 - 1009896 
*x^6 + 313212*x^5 + 248121*x^4 - 75940*x^3 - 48198*x^2 + 19716*x - 2008)) 
- 6*(-4)^(1/3)*(26655*x^12 - 185476*x^11 + 155872*x^10 + 361508*x^9 - 3631 
17*x^8 - 87612*x^7 - 197936*x^6 + 492924*x^5 - 182367*x^4 - 39436*x^3 + 18 
254*x^2 + 3652*x - 1278) - 6*(-x^3 + 1)^(1/3)*(sqrt(-3)*(-4)^(2/3)*(1459*x 
^11 + 94937*x^10 - 314364*x^9 + 204807*x^8 + 73586*x^7 + 103515*x^6 - 2639 
73*x^5 + 67714*x^4 + 54774*x^3 - 25376*x^2 + 2008*x) + (-4)^(2/3)*(1459*x^ 
11 + 94937*x^10 - 314364*x^9 + 204807*x^8 + 73586*x^7 + 103515*x^6 - 26397 
3*x^5 + 67714*x^4 + 54774*x^3 - 25376*x^2 + 2008*x) + 2*sqrt(3)*(sqrt(-3)* 
(-4)^(1/6)*(12049*x^11 - 48557*x^10 - 31048*x^9 + 203745*x^8 - 117748*x...
 
3.1.59.6 Sympy [F]

\[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\int \frac {\sqrt [3]{- \left (x - 1\right ) \left (x^{2} + x + 1\right )}}{x^{2} - x + 1}\, dx \]

input
integrate((-x**3+1)**(1/3)/(x**2-x+1),x)
 
output
Integral((-(x - 1)*(x**2 + x + 1))**(1/3)/(x**2 - x + 1), x)
 
3.1.59.7 Maxima [F]

\[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\int { \frac {{\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{2} - x + 1} \,d x } \]

input
integrate((-x^3+1)^(1/3)/(x^2-x+1),x, algorithm="maxima")
 
output
integrate((-x^3 + 1)^(1/3)/(x^2 - x + 1), x)
 
3.1.59.8 Giac [F]

\[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\int { \frac {{\left (-x^{3} + 1\right )}^{\frac {1}{3}}}{x^{2} - x + 1} \,d x } \]

input
integrate((-x^3+1)^(1/3)/(x^2-x+1),x, algorithm="giac")
 
output
integrate((-x^3 + 1)^(1/3)/(x^2 - x + 1), x)
 
3.1.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{1-x^3}}{1-x+x^2} \, dx=\int \frac {{\left (1-x^3\right )}^{1/3}}{x^2-x+1} \,d x \]

input
int((1 - x^3)^(1/3)/(x^2 - x + 1),x)
 
output
int((1 - x^3)^(1/3)/(x^2 - x + 1), x)