3.1.70 \(\int \frac {a+b x}{\sqrt [4]{-1-x^2} (2+x^2)} \, dx\) [70]

3.1.70.1 Optimal result
3.1.70.2 Mathematica [C] (warning: unable to verify)
3.1.70.3 Rubi [A] (verified)
3.1.70.4 Maple [F]
3.1.70.5 Fricas [F(-1)]
3.1.70.6 Sympy [F]
3.1.70.7 Maxima [F]
3.1.70.8 Giac [F]
3.1.70.9 Mupad [F(-1)]

3.1.70.1 Optimal result

Integrand size = 24, antiderivative size = 88 \[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\frac {a \arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-1-x^2}}\right )}{2 \sqrt {2}}+b \arctan \left (\sqrt [4]{-1-x^2}\right )+\frac {a \text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-1-x^2}}\right )}{2 \sqrt {2}}-b \text {arctanh}\left (\sqrt [4]{-1-x^2}\right ) \]

output
b*arctan((-x^2-1)^(1/4))-b*arctanh((-x^2-1)^(1/4))+1/4*a*arctan(1/2*x/(-x^ 
2-1)^(1/4)*2^(1/2))*2^(1/2)+1/4*a*arctanh(1/2*x/(-x^2-1)^(1/4)*2^(1/2))*2^ 
(1/2)
 
3.1.70.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 10.18 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.84 \[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\frac {x \left (b x \sqrt [4]{1+x^2} \operatorname {AppellF1}\left (1,\frac {1}{4},1,2,-x^2,-\frac {x^2}{2}\right )-\frac {24 a \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{4},1,\frac {3}{2},-x^2,-\frac {x^2}{2}\right )}{\left (2+x^2\right ) \left (-6 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{4},1,\frac {3}{2},-x^2,-\frac {x^2}{2}\right )+x^2 \left (2 \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{4},2,\frac {5}{2},-x^2,-\frac {x^2}{2}\right )+\operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{4},1,\frac {5}{2},-x^2,-\frac {x^2}{2}\right )\right )\right )}\right )}{4 \sqrt [4]{-1-x^2}} \]

input
Integrate[(a + b*x)/((-1 - x^2)^(1/4)*(2 + x^2)),x]
 
output
(x*(b*x*(1 + x^2)^(1/4)*AppellF1[1, 1/4, 1, 2, -x^2, -1/2*x^2] - (24*a*App 
ellF1[1/2, 1/4, 1, 3/2, -x^2, -1/2*x^2])/((2 + x^2)*(-6*AppellF1[1/2, 1/4, 
 1, 3/2, -x^2, -1/2*x^2] + x^2*(2*AppellF1[3/2, 1/4, 2, 5/2, -x^2, -1/2*x^ 
2] + AppellF1[3/2, 5/4, 1, 5/2, -x^2, -1/2*x^2])))))/(4*(-1 - x^2)^(1/4))
 
3.1.70.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {1343, 309, 353, 73, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x}{\sqrt [4]{-x^2-1} \left (x^2+2\right )} \, dx\)

\(\Big \downarrow \) 1343

\(\displaystyle a \int \frac {1}{\sqrt [4]{-x^2-1} \left (x^2+2\right )}dx+b \int \frac {x}{\sqrt [4]{-x^2-1} \left (x^2+2\right )}dx\)

\(\Big \downarrow \) 309

\(\displaystyle b \int \frac {x}{\sqrt [4]{-x^2-1} \left (x^2+2\right )}dx+a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {1}{2} b \int \frac {1}{\sqrt [4]{-x^2-1} \left (x^2+2\right )}dx^2+a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 73

\(\displaystyle a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )-2 b \int \frac {x^4}{1-x^8}d\sqrt [4]{-x^2-1}\)

\(\Big \downarrow \) 827

\(\displaystyle a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )-2 b \left (\frac {1}{2} \int \frac {1}{1-x^4}d\sqrt [4]{-x^2-1}-\frac {1}{2} \int \frac {1}{x^4+1}d\sqrt [4]{-x^2-1}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )-2 b \left (\frac {1}{2} \int \frac {1}{1-x^4}d\sqrt [4]{-x^2-1}-\frac {1}{2} \arctan \left (\sqrt [4]{-x^2-1}\right )\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a \left (\frac {\arctan \left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt {2} \sqrt [4]{-x^2-1}}\right )}{2 \sqrt {2}}\right )-2 b \left (\frac {1}{2} \text {arctanh}\left (\sqrt [4]{-x^2-1}\right )-\frac {1}{2} \arctan \left (\sqrt [4]{-x^2-1}\right )\right )\)

input
Int[(a + b*x)/((-1 - x^2)^(1/4)*(2 + x^2)),x]
 
output
a*(ArcTan[x/(Sqrt[2]*(-1 - x^2)^(1/4))]/(2*Sqrt[2]) + ArcTanh[x/(Sqrt[2]*( 
-1 - x^2)^(1/4))]/(2*Sqrt[2])) - 2*b*(-1/2*ArcTan[(-1 - x^2)^(1/4)] + ArcT 
anh[(-1 - x^2)^(1/4)]/2)
 

3.1.70.3.1 Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 309
Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[-b^2/a, 4]}, Simp[(b/(2*Sqrt[2]*a*d*q))*ArcTan[q*(x/(Sqrt[2]*(a + 
 b*x^2)^(1/4)))], x] + Simp[(b/(2*Sqrt[2]*a*d*q))*ArcTanh[q*(x/(Sqrt[2]*(a 
+ b*x^2)^(1/4)))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && 
NegQ[b^2/a]
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1343
Int[((g_) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q 
_), x_Symbol] :> Simp[g   Int[(a + c*x^2)^p*(d + f*x^2)^q, x], x] + Simp[h 
  Int[x*(a + c*x^2)^p*(d + f*x^2)^q, x], x] /; FreeQ[{a, c, d, f, g, h, p, 
q}, x]
 
3.1.70.4 Maple [F]

\[\int \frac {b x +a}{\left (-x^{2}-1\right )^{\frac {1}{4}} \left (x^{2}+2\right )}d x\]

input
int((b*x+a)/(-x^2-1)^(1/4)/(x^2+2),x)
 
output
int((b*x+a)/(-x^2-1)^(1/4)/(x^2+2),x)
 
3.1.70.5 Fricas [F(-1)]

Timed out. \[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\text {Timed out} \]

input
integrate((b*x+a)/(-x^2-1)^(1/4)/(x^2+2),x, algorithm="fricas")
 
output
Timed out
 
3.1.70.6 Sympy [F]

\[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\int \frac {a + b x}{\sqrt [4]{- x^{2} - 1} \left (x^{2} + 2\right )}\, dx \]

input
integrate((b*x+a)/(-x**2-1)**(1/4)/(x**2+2),x)
 
output
Integral((a + b*x)/((-x**2 - 1)**(1/4)*(x**2 + 2)), x)
 
3.1.70.7 Maxima [F]

\[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\int { \frac {b x + a}{{\left (x^{2} + 2\right )} {\left (-x^{2} - 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((b*x+a)/(-x^2-1)^(1/4)/(x^2+2),x, algorithm="maxima")
 
output
integrate((b*x + a)/((x^2 + 2)*(-x^2 - 1)^(1/4)), x)
 
3.1.70.8 Giac [F]

\[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\int { \frac {b x + a}{{\left (x^{2} + 2\right )} {\left (-x^{2} - 1\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((b*x+a)/(-x^2-1)^(1/4)/(x^2+2),x, algorithm="giac")
 
output
integrate((b*x + a)/((x^2 + 2)*(-x^2 - 1)^(1/4)), x)
 
3.1.70.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b x}{\sqrt [4]{-1-x^2} \left (2+x^2\right )} \, dx=\int \frac {a+b\,x}{{\left (-x^2-1\right )}^{1/4}\,\left (x^2+2\right )} \,d x \]

input
int((a + b*x)/((- x^2 - 1)^(1/4)*(x^2 + 2)),x)
 
output
int((a + b*x)/((- x^2 - 1)^(1/4)*(x^2 + 2)), x)