3.1.6 \(\int \log (\frac {1}{x^4}+x^4) \, dx\) [6]

3.1.6.1 Optimal result
3.1.6.2 Mathematica [C] (verified)
3.1.6.3 Rubi [A] (verified)
3.1.6.4 Maple [C] (verified)
3.1.6.5 Fricas [C] (verification not implemented)
3.1.6.6 Sympy [A] (verification not implemented)
3.1.6.7 Maxima [F]
3.1.6.8 Giac [A] (verification not implemented)
3.1.6.9 Mupad [B] (verification not implemented)

3.1.6.1 Optimal result

Integrand size = 8, antiderivative size = 334 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=-4 x-\sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}}-2 x}{\sqrt {2+\sqrt {2}}}\right )-\sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {2+\sqrt {2}}-2 x}{\sqrt {2-\sqrt {2}}}\right )+\sqrt {2+\sqrt {2}} \arctan \left (\frac {\sqrt {2-\sqrt {2}}+2 x}{\sqrt {2+\sqrt {2}}}\right )+\sqrt {2-\sqrt {2}} \arctan \left (\frac {\sqrt {2+\sqrt {2}}+2 x}{\sqrt {2-\sqrt {2}}}\right )-\frac {1}{2} \sqrt {2-\sqrt {2}} \log \left (1-\sqrt {2-\sqrt {2}} x+x^2\right )+\frac {1}{2} \sqrt {2-\sqrt {2}} \log \left (1+\sqrt {2-\sqrt {2}} x+x^2\right )-\frac {1}{2} \sqrt {2+\sqrt {2}} \log \left (1-\sqrt {2+\sqrt {2}} x+x^2\right )+\frac {1}{2} \sqrt {2+\sqrt {2}} \log \left (1+\sqrt {2+\sqrt {2}} x+x^2\right )+x \log \left (\frac {1}{x^4}+x^4\right ) \]

output
-4*x+x*ln(1/x^4+x^4)-arctan((-2*x+(2+2^(1/2))^(1/2))/(2-2^(1/2))^(1/2))*(2 
-2^(1/2))^(1/2)+arctan((2*x+(2+2^(1/2))^(1/2))/(2-2^(1/2))^(1/2))*(2-2^(1/ 
2))^(1/2)-1/2*ln(1+x^2-x*(2-2^(1/2))^(1/2))*(2-2^(1/2))^(1/2)+1/2*ln(1+x^2 
+x*(2-2^(1/2))^(1/2))*(2-2^(1/2))^(1/2)-arctan((-2*x+(2-2^(1/2))^(1/2))/(2 
+2^(1/2))^(1/2))*(2+2^(1/2))^(1/2)+arctan((2*x+(2-2^(1/2))^(1/2))/(2+2^(1/ 
2))^(1/2))*(2+2^(1/2))^(1/2)-1/2*ln(1+x^2-x*(2+2^(1/2))^(1/2))*(2+2^(1/2)) 
^(1/2)+1/2*ln(1+x^2+x*(2+2^(1/2))^(1/2))*(2+2^(1/2))^(1/2)
 
3.1.6.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.00 (sec) , antiderivative size = 30, normalized size of antiderivative = 0.09 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=-4 x+8 x \operatorname {Hypergeometric2F1}\left (\frac {1}{8},1,\frac {9}{8},-x^8\right )+x \log \left (\frac {1}{x^4}+x^4\right ) \]

input
Integrate[Log[x^(-4) + x^4],x]
 
output
-4*x + 8*x*Hypergeometric2F1[1/8, 1, 9/8, -x^8] + x*Log[x^(-4) + x^4]
 
3.1.6.3 Rubi [A] (verified)

Time = 0.61 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.250, Rules used = {3003, 27, 913, 757, 1483, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \log \left (x^4+\frac {1}{x^4}\right ) \, dx\)

\(\Big \downarrow \) 3003

\(\displaystyle x \log \left (x^4+\frac {1}{x^4}\right )-\int -\frac {4 \left (1-x^8\right )}{x^8+1}dx\)

\(\Big \downarrow \) 27

\(\displaystyle 4 \int \frac {1-x^8}{x^8+1}dx+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 913

\(\displaystyle 4 \left (2 \int \frac {1}{x^8+1}dx-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 757

\(\displaystyle 4 \left (2 \left (\frac {\int \frac {\sqrt {2}-x^2}{x^4-\sqrt {2} x^2+1}dx}{2 \sqrt {2}}+\frac {\int \frac {x^2+\sqrt {2}}{x^4+\sqrt {2} x^2+1}dx}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 1483

\(\displaystyle 4 \left (2 \left (\frac {\frac {\int \frac {\left (1-\sqrt {2}\right ) x+\sqrt {2 \left (2-\sqrt {2}\right )}}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\int \frac {\sqrt {2 \left (2-\sqrt {2}\right )}-\left (1-\sqrt {2}\right ) x}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\int \frac {\sqrt {2 \left (2+\sqrt {2}\right )}-\left (1+\sqrt {2}\right ) x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\int \frac {\left (1+\sqrt {2}\right ) x+\sqrt {2 \left (2+\sqrt {2}\right )}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 1142

\(\displaystyle 4 \left (2 \left (\frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2-\sqrt {2-\sqrt {2}} x+1}dx+\frac {1}{2} \left (1-\sqrt {2}\right ) \int -\frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2-\sqrt {2+\sqrt {2}} x+1}dx-\frac {1}{2} \left (1+\sqrt {2}\right ) \int -\frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 4 \left (2 \left (\frac {\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2-\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2+\sqrt {2}} \int \frac {1}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2-\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \sqrt {2-\sqrt {2}} \int \frac {1}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 1083

\(\displaystyle 4 \left (2 \left (\frac {\frac {-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx-\sqrt {2+\sqrt {2}} \int \frac {1}{-\left (2 x-\sqrt {2-\sqrt {2}}\right )^2-\sqrt {2}-2}d\left (2 x-\sqrt {2-\sqrt {2}}\right )}{2 \sqrt {2-\sqrt {2}}}+\frac {-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx-\sqrt {2+\sqrt {2}} \int \frac {1}{-\left (2 x+\sqrt {2-\sqrt {2}}\right )^2-\sqrt {2}-2}d\left (2 x+\sqrt {2-\sqrt {2}}\right )}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx-\sqrt {2-\sqrt {2}} \int \frac {1}{-\left (2 x-\sqrt {2+\sqrt {2}}\right )^2+\sqrt {2}-2}d\left (2 x-\sqrt {2+\sqrt {2}}\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx-\sqrt {2-\sqrt {2}} \int \frac {1}{-\left (2 x+\sqrt {2+\sqrt {2}}\right )^2+\sqrt {2}-2}d\left (2 x+\sqrt {2+\sqrt {2}}\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle 4 \left (2 \left (\frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {\sqrt {2-\sqrt {2}}-2 x}{x^2-\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \int \frac {2 x+\sqrt {2-\sqrt {2}}}{x^2+\sqrt {2-\sqrt {2}} x+1}dx}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {\sqrt {2+\sqrt {2}}-2 x}{x^2-\sqrt {2+\sqrt {2}} x+1}dx+\arctan \left (\frac {2 x-\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\frac {1}{2} \left (1+\sqrt {2}\right ) \int \frac {2 x+\sqrt {2+\sqrt {2}}}{x^2+\sqrt {2+\sqrt {2}} x+1}dx+\arctan \left (\frac {2 x+\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle 4 \left (2 \left (\frac {\frac {\arctan \left (\frac {2 x-\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )+\frac {1}{2} \left (1-\sqrt {2}\right ) \log \left (x^2-\sqrt {2-\sqrt {2}} x+1\right )}{2 \sqrt {2-\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2-\sqrt {2}}}{\sqrt {2+\sqrt {2}}}\right )-\frac {1}{2} \left (1-\sqrt {2}\right ) \log \left (x^2+\sqrt {2-\sqrt {2}} x+1\right )}{2 \sqrt {2-\sqrt {2}}}}{2 \sqrt {2}}+\frac {\frac {\arctan \left (\frac {2 x-\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )-\frac {1}{2} \left (1+\sqrt {2}\right ) \log \left (x^2-\sqrt {2+\sqrt {2}} x+1\right )}{2 \sqrt {2+\sqrt {2}}}+\frac {\arctan \left (\frac {2 x+\sqrt {2+\sqrt {2}}}{\sqrt {2-\sqrt {2}}}\right )+\frac {1}{2} \left (1+\sqrt {2}\right ) \log \left (x^2+\sqrt {2+\sqrt {2}} x+1\right )}{2 \sqrt {2+\sqrt {2}}}}{2 \sqrt {2}}\right )-x\right )+x \log \left (x^4+\frac {1}{x^4}\right )\)

input
Int[Log[x^(-4) + x^4],x]
 
output
4*(-x + 2*(((ArcTan[(-Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]] + ((1 - 
Sqrt[2])*Log[1 - Sqrt[2 - Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[2]]) + (A 
rcTan[(Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]] - ((1 - Sqrt[2])*Log[1 
+ Sqrt[2 - Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 - Sqrt[2]]))/(2*Sqrt[2]) + ((Ar 
cTan[(-Sqrt[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]] - ((1 + Sqrt[2])*Log[1 
- Sqrt[2 + Sqrt[2]]*x + x^2])/2)/(2*Sqrt[2 + Sqrt[2]]) + (ArcTan[(Sqrt[2 + 
 Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]] + ((1 + Sqrt[2])*Log[1 + Sqrt[2 + Sqrt 
[2]]*x + x^2])/2)/(2*Sqrt[2 + Sqrt[2]]))/(2*Sqrt[2]))) + x*Log[x^(-4) + x^ 
4]
 

3.1.6.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 757
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
 4]], s = Denominator[Rt[a/b, 4]]}, Simp[r/(2*Sqrt[2]*a)   Int[(Sqrt[2]*r - 
 s*x^(n/4))/(r^2 - Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x] + Simp[r/(2*S 
qrt[2]*a)   Int[(Sqrt[2]*r + s*x^(n/4))/(r^2 + Sqrt[2]*r*s*x^(n/4) + s^2*x^ 
(n/2)), x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 1] && GtQ[a/b, 0]
 

rule 913
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(p + 1) + 1))), x] - Simp[(a*d - b*c*(n*( 
p + 1) + 1))/(b*(n*(p + 1) + 1))   Int[(a + b*x^n)^p, x], x] /; FreeQ[{a, b 
, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 

rule 1483
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r)   In 
t[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r)   Int[(d*r 
 + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && N 
eQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
 

rule 3003
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + 
 b*Log[c*RFx^p])^n, x] - Simp[b*n*p   Int[SimplifyIntegrand[x*(a + b*Log[c* 
RFx^p])^(n - 1)*(D[RFx, x]/RFx), x], x], x] /; FreeQ[{a, b, c, p}, x] && Ra 
tionalFunctionQ[RFx, x] && IGtQ[n, 0]
 
3.1.6.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.28 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.10

method result size
risch \(x \ln \left (\frac {1}{x^{4}}+x^{4}\right )-4 x +\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{7}}\right )\) \(34\)
parts \(x \ln \left (\frac {1}{x^{4}}+x^{4}\right )-4 x +\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{7}}\right )\) \(34\)
default \(x \ln \left (\frac {x^{8}+1}{x^{4}}\right )-4 x +\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+1\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{7}}\right )\) \(36\)

input
int(ln(1/x^4+x^4),x,method=_RETURNVERBOSE)
 
output
x*ln(1/x^4+x^4)-4*x+sum(1/_R^7*ln(x-_R),_R=RootOf(_Z^8+1))
 
3.1.6.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.45 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=x \log \left (\frac {x^{8} + 1}{x^{4}}\right ) + \left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x + \left (i + 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) - \left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x - \left (i - 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) + \left (\frac {1}{2} i - \frac {1}{2}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x + \left (i - 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) - \left (\frac {1}{2} i + \frac {1}{2}\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}} \log \left (2 \, x - \left (i + 1\right ) \, \sqrt {2} \left (-1\right )^{\frac {1}{8}}\right ) + \left (-1\right )^{\frac {1}{8}} \log \left (x + \left (-1\right )^{\frac {1}{8}}\right ) + i \, \left (-1\right )^{\frac {1}{8}} \log \left (x + i \, \left (-1\right )^{\frac {1}{8}}\right ) - i \, \left (-1\right )^{\frac {1}{8}} \log \left (x - i \, \left (-1\right )^{\frac {1}{8}}\right ) - \left (-1\right )^{\frac {1}{8}} \log \left (x - \left (-1\right )^{\frac {1}{8}}\right ) - 4 \, x \]

input
integrate(log(1/x^4+x^4),x, algorithm="fricas")
 
output
x*log((x^8 + 1)/x^4) + (1/2*I + 1/2)*sqrt(2)*(-1)^(1/8)*log(2*x + (I + 1)* 
sqrt(2)*(-1)^(1/8)) - (1/2*I - 1/2)*sqrt(2)*(-1)^(1/8)*log(2*x - (I - 1)*s 
qrt(2)*(-1)^(1/8)) + (1/2*I - 1/2)*sqrt(2)*(-1)^(1/8)*log(2*x + (I - 1)*sq 
rt(2)*(-1)^(1/8)) - (1/2*I + 1/2)*sqrt(2)*(-1)^(1/8)*log(2*x - (I + 1)*sqr 
t(2)*(-1)^(1/8)) + (-1)^(1/8)*log(x + (-1)^(1/8)) + I*(-1)^(1/8)*log(x + I 
*(-1)^(1/8)) - I*(-1)^(1/8)*log(x - I*(-1)^(1/8)) - (-1)^(1/8)*log(x - (-1 
)^(1/8)) - 4*x
 
3.1.6.6 Sympy [A] (verification not implemented)

Time = 1.42 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.08 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=x \log {\left (x^{4} + \frac {1}{x^{4}} \right )} - 4 x - \operatorname {RootSum} {\left (t^{8} + 1, \left ( t \mapsto t \log {\left (- t + x \right )} \right )\right )} \]

input
integrate(ln(1/x**4+x**4),x)
 
output
x*log(x**4 + x**(-4)) - 4*x - RootSum(_t**8 + 1, Lambda(_t, _t*log(-_t + x 
)))
 
3.1.6.7 Maxima [F]

\[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=\int { \log \left (x^{4} + \frac {1}{x^{4}}\right ) \,d x } \]

input
integrate(log(1/x^4+x^4),x, algorithm="maxima")
 
output
x*log(x^8 + 1) - 4*x*log(x) - 4*x + 8*integrate(1/(x^8 + 1), x)
 
3.1.6.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 248, normalized size of antiderivative = 0.74 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=x \log \left (x^{4} + \frac {1}{x^{4}}\right ) + \sqrt {\sqrt {2} + 2} \arctan \left (\frac {2 \, x + \sqrt {-\sqrt {2} + 2}}{\sqrt {\sqrt {2} + 2}}\right ) + \sqrt {\sqrt {2} + 2} \arctan \left (\frac {2 \, x - \sqrt {-\sqrt {2} + 2}}{\sqrt {\sqrt {2} + 2}}\right ) + \sqrt {-\sqrt {2} + 2} \arctan \left (\frac {2 \, x + \sqrt {\sqrt {2} + 2}}{\sqrt {-\sqrt {2} + 2}}\right ) + \sqrt {-\sqrt {2} + 2} \arctan \left (\frac {2 \, x - \sqrt {\sqrt {2} + 2}}{\sqrt {-\sqrt {2} + 2}}\right ) + \frac {1}{2} \, \sqrt {\sqrt {2} + 2} \log \left (x^{2} + x \sqrt {\sqrt {2} + 2} + 1\right ) - \frac {1}{2} \, \sqrt {\sqrt {2} + 2} \log \left (x^{2} - x \sqrt {\sqrt {2} + 2} + 1\right ) + \frac {1}{2} \, \sqrt {-\sqrt {2} + 2} \log \left (x^{2} + x \sqrt {-\sqrt {2} + 2} + 1\right ) - \frac {1}{2} \, \sqrt {-\sqrt {2} + 2} \log \left (x^{2} - x \sqrt {-\sqrt {2} + 2} + 1\right ) - 4 \, x \]

input
integrate(log(1/x^4+x^4),x, algorithm="giac")
 
output
x*log(x^4 + 1/x^4) + sqrt(sqrt(2) + 2)*arctan((2*x + sqrt(-sqrt(2) + 2))/s 
qrt(sqrt(2) + 2)) + sqrt(sqrt(2) + 2)*arctan((2*x - sqrt(-sqrt(2) + 2))/sq 
rt(sqrt(2) + 2)) + sqrt(-sqrt(2) + 2)*arctan((2*x + sqrt(sqrt(2) + 2))/sqr 
t(-sqrt(2) + 2)) + sqrt(-sqrt(2) + 2)*arctan((2*x - sqrt(sqrt(2) + 2))/sqr 
t(-sqrt(2) + 2)) + 1/2*sqrt(sqrt(2) + 2)*log(x^2 + x*sqrt(sqrt(2) + 2) + 1 
) - 1/2*sqrt(sqrt(2) + 2)*log(x^2 - x*sqrt(sqrt(2) + 2) + 1) + 1/2*sqrt(-s 
qrt(2) + 2)*log(x^2 + x*sqrt(-sqrt(2) + 2) + 1) - 1/2*sqrt(-sqrt(2) + 2)*l 
og(x^2 - x*sqrt(-sqrt(2) + 2) + 1) - 4*x
 
3.1.6.9 Mupad [B] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 313, normalized size of antiderivative = 0.94 \[ \int \log \left (\frac {1}{x^4}+x^4\right ) \, dx=x\,\ln \left (\frac {1}{x^4}+x^4\right )-4\,x+\mathrm {atan}\left (\frac {x\,\sqrt {-\sqrt {2}-2}\,2097152{}\mathrm {i}}{2097152\,\sqrt {2-\sqrt {2}}\,\sqrt {-\sqrt {2}-2}+2097152\,\sqrt {2}}-\frac {x\,\sqrt {2-\sqrt {2}}\,2097152{}\mathrm {i}}{2097152\,\sqrt {2-\sqrt {2}}\,\sqrt {-\sqrt {2}-2}+2097152\,\sqrt {2}}\right )\,\left (\sqrt {-\sqrt {2}-2}\,1{}\mathrm {i}-\sqrt {2-\sqrt {2}}\,1{}\mathrm {i}\right )-\mathrm {atan}\left (\frac {x\,\sqrt {\sqrt {2}-2}\,2097152{}\mathrm {i}}{2097152\,\sqrt {2}+2097152\,\sqrt {\sqrt {2}-2}\,\sqrt {\sqrt {2}+2}}+\frac {x\,\sqrt {\sqrt {2}+2}\,2097152{}\mathrm {i}}{2097152\,\sqrt {2}+2097152\,\sqrt {\sqrt {2}-2}\,\sqrt {\sqrt {2}+2}}\right )\,\left (\sqrt {\sqrt {2}-2}\,1{}\mathrm {i}+\sqrt {\sqrt {2}+2}\,1{}\mathrm {i}\right )+\mathrm {atan}\left (-\frac {\sqrt {2}\,x\,\sqrt {\sqrt {2}+2}}{2}+x\,\sqrt {\sqrt {2}+2}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {\sqrt {2}\,1{}\mathrm {i}}{2}-\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {\sqrt {2}+2}\,2{}\mathrm {i}-\mathrm {atan}\left (x\,\sqrt {\sqrt {2}+2}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )+\frac {\sqrt {2}\,x\,\sqrt {\sqrt {2}+2}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {\sqrt {2}}{2}-\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\,\sqrt {\sqrt {2}+2}\,2{}\mathrm {i} \]

input
int(log(1/x^4 + x^4),x)
 
output
x*log(1/x^4 + x^4) - 4*x + atan((x*(- 2^(1/2) - 2)^(1/2)*2097152i)/(209715 
2*(2 - 2^(1/2))^(1/2)*(- 2^(1/2) - 2)^(1/2) + 2097152*2^(1/2)) - (x*(2 - 2 
^(1/2))^(1/2)*2097152i)/(2097152*(2 - 2^(1/2))^(1/2)*(- 2^(1/2) - 2)^(1/2) 
 + 2097152*2^(1/2)))*((- 2^(1/2) - 2)^(1/2)*1i - (2 - 2^(1/2))^(1/2)*1i) - 
 atan((x*(2^(1/2) - 2)^(1/2)*2097152i)/(2097152*2^(1/2) + 2097152*(2^(1/2) 
 - 2)^(1/2)*(2^(1/2) + 2)^(1/2)) + (x*(2^(1/2) + 2)^(1/2)*2097152i)/(20971 
52*2^(1/2) + 2097152*(2^(1/2) - 2)^(1/2)*(2^(1/2) + 2)^(1/2)))*((2^(1/2) - 
 2)^(1/2)*1i + (2^(1/2) + 2)^(1/2)*1i) + atan(x*(2^(1/2) + 2)^(1/2)*(1/2 + 
 1i/2) - (2^(1/2)*x*(2^(1/2) + 2)^(1/2))/2)*((2^(1/2)*1i)/2 - (1/2 + 1i/2) 
)*(2^(1/2) + 2)^(1/2)*2i - atan(x*(2^(1/2) + 2)^(1/2)*(1/2 - 1i/2) + (2^(1 
/2)*x*(2^(1/2) + 2)^(1/2)*1i)/2)*(2^(1/2)/2 - (1/2 - 1i/2))*(2^(1/2) + 2)^ 
(1/2)*2i