3.3.14 \(\int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr\) [214]

3.3.14.1 Optimal result
3.3.14.2 Mathematica [A] (verified)
3.3.14.3 Rubi [A] (verified)
3.3.14.4 Maple [A] (verified)
3.3.14.5 Fricas [A] (verification not implemented)
3.3.14.6 Sympy [F]
3.3.14.7 Maxima [F(-2)]
3.3.14.8 Giac [A] (verification not implemented)
3.3.14.9 Mupad [B] (verification not implemented)

3.3.14.1 Optimal result

Integrand size = 31, antiderivative size = 68 \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=-\frac {\arctan \left (\frac {\alpha ^2+\epsilon ^2-h r^2}{\sqrt {\alpha ^2+\epsilon ^2} \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )}{2 \sqrt {\alpha ^2+\epsilon ^2}} \]

output
-1/2*arctan((-h*r^2+alpha^2+epsilon^2)/(alpha^2+epsilon^2)^(1/2)/(-2*k*r^4 
+2*h*r^2-alpha^2-epsilon^2)^(1/2))/(alpha^2+epsilon^2)^(1/2)
 
3.3.14.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.06 \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=-\frac {\arctan \left (\frac {\sqrt {2} \sqrt {-k} r^2-\sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}{\sqrt {\alpha ^2+\epsilon ^2}}\right )}{\sqrt {\alpha ^2+\epsilon ^2}} \]

input
Integrate[1/(r*Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4]),r]
 
output
-(ArcTan[(Sqrt[2]*Sqrt[-k]*r^2 - Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k 
*r^4])/Sqrt[alpha^2 + epsilon^2]]/Sqrt[alpha^2 + epsilon^2])
 
3.3.14.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {1434, 1154, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr\)

\(\Big \downarrow \) 1434

\(\displaystyle \frac {1}{2} \int \frac {1}{r^2 \sqrt {-2 k r^4+2 h r^2-\alpha ^2-\epsilon ^2}}dr^2\)

\(\Big \downarrow \) 1154

\(\displaystyle -\int \frac {1}{-r^4-4 \left (\alpha ^2+\epsilon ^2\right )}d\left (-\frac {2 \left (\alpha ^2+\epsilon ^2-h r^2\right )}{\sqrt {-2 k r^4+2 h r^2-\alpha ^2-\epsilon ^2}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {\arctan \left (\frac {\alpha ^2+\epsilon ^2-h r^2}{\sqrt {\alpha ^2+\epsilon ^2} \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}}\right )}{2 \sqrt {\alpha ^2+\epsilon ^2}}\)

input
Int[1/(r*Sqrt[-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4]),r]
 
output
-1/2*ArcTan[(alpha^2 + epsilon^2 - h*r^2)/(Sqrt[alpha^2 + epsilon^2]*Sqrt[ 
-alpha^2 - epsilon^2 + 2*h*r^2 - 2*k*r^4])]/Sqrt[alpha^2 + epsilon^2]
 

3.3.14.3.1 Defintions of rubi rules used

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1434
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp 
[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; Free 
Q[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
 
3.3.14.4 Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.15

method result size
default \(-\frac {\ln \left (\frac {-2 \alpha ^{2}-2 \epsilon ^{2}+2 h \,r^{2}+2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}\, \sqrt {-2 k \,r^{4}+2 h \,r^{2}-\alpha ^{2}-\epsilon ^{2}}}{r^{2}}\right )}{2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}}\) \(78\)
elliptic \(-\frac {\ln \left (\frac {-2 \alpha ^{2}-2 \epsilon ^{2}+2 h \,r^{2}+2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}\, \sqrt {-2 k \,r^{4}+2 h \,r^{2}-\alpha ^{2}-\epsilon ^{2}}}{r^{2}}\right )}{2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}}\) \(78\)
pseudoelliptic \(-\frac {\ln \left (2\right )+\ln \left (\frac {h \,r^{2}+\sqrt {-\alpha ^{2}-\epsilon ^{2}}\, \sqrt {-2 k \,r^{4}+2 h \,r^{2}-\alpha ^{2}-\epsilon ^{2}}-\alpha ^{2}-\epsilon ^{2}}{r^{2}}\right )}{2 \sqrt {-\alpha ^{2}-\epsilon ^{2}}}\) \(79\)

input
int(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r,method=_RETURNVERBOSE 
)
 
output
-1/2/(-alpha^2-epsilon^2)^(1/2)*ln((-2*alpha^2-2*epsilon^2+2*h*r^2+2*(-alp 
ha^2-epsilon^2)^(1/2)*(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2))/r^2)
 
3.3.14.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.56 \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=-\frac {\arctan \left (\frac {\sqrt {-2 \, k r^{4} + 2 \, h r^{2} - \alpha ^{2} - \epsilon ^{2}} {\left (h r^{2} - \alpha ^{2} - \epsilon ^{2}\right )} \sqrt {\alpha ^{2} + \epsilon ^{2}}}{2 \, {\left (\alpha ^{2} + \epsilon ^{2}\right )} k r^{4} + \alpha ^{4} + 2 \, \alpha ^{2} \epsilon ^{2} + \epsilon ^{4} - 2 \, {\left (\alpha ^{2} + \epsilon ^{2}\right )} h r^{2}}\right )}{2 \, \sqrt {\alpha ^{2} + \epsilon ^{2}}} \]

input
integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r, algorithm="fri 
cas")
 
output
-1/2*arctan(sqrt(-2*k*r^4 + 2*h*r^2 - alpha^2 - epsilon^2)*(h*r^2 - alpha^ 
2 - epsilon^2)*sqrt(alpha^2 + epsilon^2)/(2*(alpha^2 + epsilon^2)*k*r^4 + 
alpha^4 + 2*alpha^2*epsilon^2 + epsilon^4 - 2*(alpha^2 + epsilon^2)*h*r^2) 
)/sqrt(alpha^2 + epsilon^2)
 
3.3.14.6 Sympy [F]

\[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=\int \frac {1}{r \sqrt {- \alpha ^{2} - \epsilon ^{2} + 2 h r^{2} - 2 k r^{4}}}\, dr \]

input
integrate(1/r/(-2*k*r**4+2*h*r**2-alpha**2-epsilon**2)**(1/2),r)
 
output
Integral(1/(r*sqrt(-alpha**2 - epsilon**2 + 2*h*r**2 - 2*k*r**4)), r)
 
3.3.14.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=\text {Exception raised: ValueError} \]

input
integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r, algorithm="max 
ima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(2*epsilon^2*k+2*alpha^2*k>0)', s 
ee `assume
 
3.3.14.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.91 \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=\frac {\arctan \left (-\frac {\sqrt {2} \sqrt {-k} r^{2} - \sqrt {-2 \, k r^{4} + 2 \, h r^{2} - \alpha ^{2} - \epsilon ^{2}}}{\sqrt {\alpha ^{2} + \epsilon ^{2}}}\right )}{\sqrt {\alpha ^{2} + \epsilon ^{2}}} \]

input
integrate(1/r/(-2*k*r^4+2*h*r^2-alpha^2-epsilon^2)^(1/2),r, algorithm="gia 
c")
 
output
arctan(-(sqrt(2)*sqrt(-k)*r^2 - sqrt(-2*k*r^4 + 2*h*r^2 - alpha^2 - epsilo 
n^2))/sqrt(alpha^2 + epsilon^2))/sqrt(alpha^2 + epsilon^2)
 
3.3.14.9 Mupad [B] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.06 \[ \int \frac {1}{r \sqrt {-\alpha ^2-\epsilon ^2+2 h r^2-2 k r^4}} \, dr=-\frac {\ln \left (h-\frac {\alpha ^2+\epsilon ^2}{r^2}+\frac {\sqrt {-\alpha ^2-\epsilon ^2}\,\sqrt {-\alpha ^2-\epsilon ^2-2\,k\,r^4+2\,h\,r^2}}{r^2}\right )}{2\,\sqrt {-\alpha ^2-\epsilon ^2}} \]

input
int(1/(r*(2*h*r^2 - 2*k*r^4 - alpha^2 - epsilon^2)^(1/2)),r)
 
output
-log(h - (alpha^2 + epsilon^2)/r^2 + ((- alpha^2 - epsilon^2)^(1/2)*(2*h*r 
^2 - 2*k*r^4 - alpha^2 - epsilon^2)^(1/2))/r^2)/(2*(- alpha^2 - epsilon^2) 
^(1/2))