3.3.57 \(\int \frac {(1+x^3) \log (x)}{2+x^4} \, dx\) [257]

3.3.57.1 Optimal result
3.3.57.2 Mathematica [A] (verified)
3.3.57.3 Rubi [A] (verified)
3.3.57.4 Maple [B] (verified)
3.3.57.5 Fricas [F]
3.3.57.6 Sympy [F]
3.3.57.7 Maxima [F]
3.3.57.8 Giac [F]
3.3.57.9 Mupad [F(-1)]

3.3.57.1 Optimal result

Integrand size = 15, antiderivative size = 227 \[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\frac {1}{8} \left (2+i \sqrt [4]{-2}\right ) \log (x) \log \left (1-\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{16} \left (4+(1-i) 2^{3/4}\right ) \log (x) \log \left (1+\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2+\sqrt [4]{-2}\right ) \log (x) \log \left (1-\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{8} \left (2-\sqrt [4]{-2}\right ) \log (x) \log \left (1+\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{16} \left (4+(1-i) 2^{3/4}\right ) \operatorname {PolyLog}\left (2,-\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2+i \sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2-\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,-\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{8} \left (2+\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right ) \]

output
1/8*(2+I*(-2)^(1/4))*ln(x)*ln(1-(1/2+1/2*I)*x*2^(1/4))+1/16*(4+(1-I)*2^(3/ 
4))*ln(x)*ln(1+(1/2+1/2*I)*x*2^(1/4))+1/8*(2+(-2)^(1/4))*ln(x)*ln(1-1/2*(- 
1)^(3/4)*x*2^(3/4))+1/8*(2-(-2)^(1/4))*ln(x)*ln(1+1/2*(-1)^(3/4)*x*2^(3/4) 
)+1/16*(4+(1-I)*2^(3/4))*polylog(2,(-1/2-1/2*I)*x*2^(1/4))+1/8*(2+I*(-2)^( 
1/4))*polylog(2,(1/2+1/2*I)*x*2^(1/4))+1/8*(2-(-2)^(1/4))*polylog(2,-1/2*( 
-1)^(3/4)*x*2^(3/4))+1/8*(2+(-2)^(1/4))*polylog(2,1/2*(-1)^(3/4)*x*2^(3/4) 
)
 
3.3.57.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.85 \[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\frac {1}{8} \left (\left (2+i \sqrt [4]{-2}\right ) \log (x) \log \left (1-\sqrt [4]{-\frac {1}{2}} x\right )+\left (2+\frac {1-i}{\sqrt [4]{2}}\right ) \log (x) \log \left (1+\sqrt [4]{-\frac {1}{2}} x\right )-\left (-2+\sqrt [4]{-2}\right ) \log (x) \log \left (1-\frac {(1-i) x}{2^{3/4}}\right )+\left (2+\sqrt [4]{-2}\right ) \log (x) \log \left (1+\frac {(1-i) x}{2^{3/4}}\right )+\left (2+\frac {1-i}{\sqrt [4]{2}}\right ) \operatorname {PolyLog}\left (2,-\frac {(1+i) x}{2^{3/4}}\right )+\left (2+\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,-\frac {(1-i) x}{2^{3/4}}\right )-\left (-2+\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(1-i) x}{2^{3/4}}\right )+\left (2+i \sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(1+i) x}{2^{3/4}}\right )\right ) \]

input
Integrate[((1 + x^3)*Log[x])/(2 + x^4),x]
 
output
((2 + I*(-2)^(1/4))*Log[x]*Log[1 - (-1/2)^(1/4)*x] + (2 + (1 - I)/2^(1/4)) 
*Log[x]*Log[1 + (-1/2)^(1/4)*x] - (-2 + (-2)^(1/4))*Log[x]*Log[1 - ((1 - I 
)*x)/2^(3/4)] + (2 + (-2)^(1/4))*Log[x]*Log[1 + ((1 - I)*x)/2^(3/4)] + (2 
+ (1 - I)/2^(1/4))*PolyLog[2, ((-1 - I)*x)/2^(3/4)] + (2 + (-2)^(1/4))*Pol 
yLog[2, ((-1 + I)*x)/2^(3/4)] - (-2 + (-2)^(1/4))*PolyLog[2, ((1 - I)*x)/2 
^(3/4)] + (2 + I*(-2)^(1/4))*PolyLog[2, ((1 + I)*x)/2^(3/4)])/8
 
3.3.57.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2804, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x^3+1\right ) \log (x)}{x^4+2} \, dx\)

\(\Big \downarrow \) 2804

\(\displaystyle \int \left (\frac {\left (\sqrt [4]{-2}-2\right ) \log (x)}{8 \left (\sqrt [4]{-2}-x\right )}+\frac {\left (\sqrt [4]{-2}-2 i\right ) \log (x)}{8 \left (\sqrt [4]{-2}-i x\right )}+\frac {\left (\sqrt [4]{-2}+2 i\right ) \log (x)}{8 \left (\sqrt [4]{-2}+i x\right )}+\frac {\left (2+\sqrt [4]{-2}\right ) \log (x)}{8 \left (x+\sqrt [4]{-2}\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{8} \left (2-i \sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,-\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2+i \sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2-\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,-\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{8} \left (2+\sqrt [4]{-2}\right ) \operatorname {PolyLog}\left (2,\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{8} \left (2+i \sqrt [4]{-2}\right ) \log (x) \log \left (1-\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2-i \sqrt [4]{-2}\right ) \log (x) \log \left (1+\frac {(1+i) x}{2^{3/4}}\right )+\frac {1}{8} \left (2+\sqrt [4]{-2}\right ) \log (x) \log \left (1-\frac {(-1)^{3/4} x}{\sqrt [4]{2}}\right )+\frac {1}{8} \left (2-\sqrt [4]{-2}\right ) \log (x) \log \left (\frac {(-1)^{3/4} x}{\sqrt [4]{2}}+1\right )\)

input
Int[((1 + x^3)*Log[x])/(2 + x^4),x]
 
output
((2 + I*(-2)^(1/4))*Log[x]*Log[1 - ((1 + I)*x)/2^(3/4)])/8 + ((2 - I*(-2)^ 
(1/4))*Log[x]*Log[1 + ((1 + I)*x)/2^(3/4)])/8 + ((2 + (-2)^(1/4))*Log[x]*L 
og[1 - ((-1)^(3/4)*x)/2^(1/4)])/8 + ((2 - (-2)^(1/4))*Log[x]*Log[1 + ((-1) 
^(3/4)*x)/2^(1/4)])/8 + ((2 - I*(-2)^(1/4))*PolyLog[2, ((-1 - I)*x)/2^(3/4 
)])/8 + ((2 + I*(-2)^(1/4))*PolyLog[2, ((1 + I)*x)/2^(3/4)])/8 + ((2 - (-2 
)^(1/4))*PolyLog[2, -(((-1)^(3/4)*x)/2^(1/4))])/8 + ((2 + (-2)^(1/4))*Poly 
Log[2, ((-1)^(3/4)*x)/2^(1/4)])/8
 

3.3.57.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2804
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{ 
u = ExpandIntegrand[(a + b*Log[c*x^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] / 
; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
 
3.3.57.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 393 vs. \(2 (171 ) = 342\).

Time = 0.37 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.74

method result size
default \(\frac {\left (\left (\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}\right )^{3}+1\right ) \left (\ln \left (x \right ) \ln \left (\frac {\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}-x}{\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}}\right )+\operatorname {dilog}\left (\frac {\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}-x}{\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}}\right )\right )}{4 \left (\frac {2^{\frac {3}{4}}}{2}+\frac {i 2^{\frac {3}{4}}}{2}\right )^{3}}+\frac {\left (\left (\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}\right )^{3}+1\right ) \left (\ln \left (x \right ) \ln \left (\frac {\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}-x}{\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}}\right )+\operatorname {dilog}\left (\frac {\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}-x}{\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}}\right )\right )}{4 \left (\frac {i 2^{\frac {3}{4}}}{2}-\frac {2^{\frac {3}{4}}}{2}\right )^{3}}+\frac {\left (\left (-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}\right )^{3}+1\right ) \left (\ln \left (x \right ) \ln \left (\frac {-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}-x}{-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}}\right )+\operatorname {dilog}\left (\frac {-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}-x}{-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}}\right )\right )}{4 \left (-\frac {2^{\frac {3}{4}}}{2}-\frac {i 2^{\frac {3}{4}}}{2}\right )^{3}}+\frac {\left (\left (-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}\right )^{3}+1\right ) \left (\ln \left (x \right ) \ln \left (\frac {-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}-x}{-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}}\right )+\operatorname {dilog}\left (\frac {-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}-x}{-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}}\right )\right )}{4 \left (-\frac {i 2^{\frac {3}{4}}}{2}+\frac {2^{\frac {3}{4}}}{2}\right )^{3}}\) \(394\)
parts \(\text {Expression too large to display}\) \(790\)
risch \(\text {Expression too large to display}\) \(1210\)

input
int((x^3+1)*ln(x)/(x^4+2),x,method=_RETURNVERBOSE)
 
output
1/4*((1/2*2^(3/4)+1/2*I*2^(3/4))^3+1)/(1/2*2^(3/4)+1/2*I*2^(3/4))^3*(ln(x) 
*ln((1/2*2^(3/4)+1/2*I*2^(3/4)-x)/(1/2*2^(3/4)+1/2*I*2^(3/4)))+dilog((1/2* 
2^(3/4)+1/2*I*2^(3/4)-x)/(1/2*2^(3/4)+1/2*I*2^(3/4))))+1/4*((1/2*I*2^(3/4) 
-1/2*2^(3/4))^3+1)/(1/2*I*2^(3/4)-1/2*2^(3/4))^3*(ln(x)*ln((1/2*I*2^(3/4)- 
1/2*2^(3/4)-x)/(1/2*I*2^(3/4)-1/2*2^(3/4)))+dilog((1/2*I*2^(3/4)-1/2*2^(3/ 
4)-x)/(1/2*I*2^(3/4)-1/2*2^(3/4))))+1/4*((-1/2*2^(3/4)-1/2*I*2^(3/4))^3+1) 
/(-1/2*2^(3/4)-1/2*I*2^(3/4))^3*(ln(x)*ln((-1/2*2^(3/4)-1/2*I*2^(3/4)-x)/( 
-1/2*2^(3/4)-1/2*I*2^(3/4)))+dilog((-1/2*2^(3/4)-1/2*I*2^(3/4)-x)/(-1/2*2^ 
(3/4)-1/2*I*2^(3/4))))+1/4*((-1/2*I*2^(3/4)+1/2*2^(3/4))^3+1)/(-1/2*I*2^(3 
/4)+1/2*2^(3/4))^3*(ln(x)*ln((-1/2*I*2^(3/4)+1/2*2^(3/4)-x)/(-1/2*I*2^(3/4 
)+1/2*2^(3/4)))+dilog((-1/2*I*2^(3/4)+1/2*2^(3/4)-x)/(-1/2*I*2^(3/4)+1/2*2 
^(3/4))))
 
3.3.57.5 Fricas [F]

\[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\int { \frac {{\left (x^{3} + 1\right )} \log \left (x\right )}{x^{4} + 2} \,d x } \]

input
integrate((x^3+1)*log(x)/(x^4+2),x, algorithm="fricas")
 
output
integral((x^3 + 1)*log(x)/(x^4 + 2), x)
 
3.3.57.6 Sympy [F]

\[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\int \frac {\left (x + 1\right ) \left (x^{2} - x + 1\right ) \log {\left (x \right )}}{x^{4} + 2}\, dx \]

input
integrate((x**3+1)*ln(x)/(x**4+2),x)
 
output
Integral((x + 1)*(x**2 - x + 1)*log(x)/(x**4 + 2), x)
 
3.3.57.7 Maxima [F]

\[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\int { \frac {{\left (x^{3} + 1\right )} \log \left (x\right )}{x^{4} + 2} \,d x } \]

input
integrate((x^3+1)*log(x)/(x^4+2),x, algorithm="maxima")
 
output
integrate((x^3 + 1)*log(x)/(x^4 + 2), x)
 
3.3.57.8 Giac [F]

\[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\int { \frac {{\left (x^{3} + 1\right )} \log \left (x\right )}{x^{4} + 2} \,d x } \]

input
integrate((x^3+1)*log(x)/(x^4+2),x, algorithm="giac")
 
output
integrate((x^3 + 1)*log(x)/(x^4 + 2), x)
 
3.3.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (1+x^3\right ) \log (x)}{2+x^4} \, dx=\int \frac {\ln \left (x\right )\,\left (x^3+1\right )}{x^4+2} \,d x \]

input
int((log(x)*(x^3 + 1))/(x^4 + 2),x)
 
output
int((log(x)*(x^3 + 1))/(x^4 + 2), x)