3.3.81 \(\int (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}) \, dx\) [281]

3.3.81.1 Optimal result
3.3.81.2 Mathematica [C] (warning: unable to verify)
3.3.81.3 Rubi [F]
3.3.81.4 Maple [A] (warning: unable to verify)
3.3.81.5 Fricas [F]
3.3.81.6 Sympy [F]
3.3.81.7 Maxima [F]
3.3.81.8 Giac [F]
3.3.81.9 Mupad [F(-1)]

3.3.81.1 Optimal result

Integrand size = 40, antiderivative size = 4030 \[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx =\text {Too large to display} \]

output
1/2*x^2*(-1+2*2^(1/2))-2^(1/2)*(-1/3*(x^4+2*x^2+4*x+1)^(1/2)+1/3*(1+x)*(x^ 
4+2*x^2+4*x+1)^(1/2)+4*I*(-13+3*33^(1/2))^(1/3)*(x^4+2*x^2+4*x+1)^(1/2)/(4 
*2^(2/3)*(-I+3^(1/2))-2*I*(-13+3*33^(1/2))^(1/3)+6*I*x*(-13+3*33^(1/2))^(1 
/3)+2^(1/3)*(3^(1/2)+I)*(-13+3*33^(1/2))^(2/3))-8*2^(2/3)*EllipticE((26-6* 
33^(1/2)+6*x*(-13+3*33^(1/2))+(-13-13*I*3^(1/2)+9*I*11^(1/2)+3*33^(1/2))*( 
-26+6*33^(1/2))^(1/3)+4*I*(3^(1/2)+I)*(-26+6*33^(1/2))^(2/3))^(1/2)/((39+1 
3*I*3^(1/2)-9*I*11^(1/2)-9*33^(1/2)+4*(3-I*3^(1/2))*(-26+6*33^(1/2))^(1/3) 
)/(39-13*I*3^(1/2)+9*I*11^(1/2)-9*33^(1/2)+4*(3+I*3^(1/2))*(-26+6*33^(1/2) 
)^(1/3)))^(1/2)/(26-6*33^(1/2)+6*x*(-13+3*33^(1/2))+(-13+13*I*3^(1/2)-9*I* 
11^(1/2)+3*33^(1/2))*(-26+6*33^(1/2))^(1/3)+(-4-4*I*3^(1/2))*(-26+6*33^(1/ 
2))^(2/3))^(1/2),((84+28*I*3^(1/2)-12*I*11^(1/2)-12*33^(1/2)+(3-I*3^(1/2)- 
3*I*11^(1/2)+3*33^(1/2))*(-26+6*33^(1/2))^(1/3))/(84-28*I*3^(1/2)+12*I*11^ 
(1/2)-12*33^(1/2)+(3+I*3^(1/2)+3*I*11^(1/2)+3*33^(1/2))*(-26+6*33^(1/2))^( 
1/3)))^(1/2))*(x^4+2*x^2+4*x+1)^(1/2)*3^(1/2)/(-13+3*33^(1/2)+4*(-26+6*33^ 
(1/2))^(1/3))^(1/2)*(I*(-19899+x*(59697-10335*33^(1/2))+3445*33^(1/2)+(-26 
+6*33^(1/2))^(2/3)*(-2574+466*33^(1/2))+(-26+6*33^(1/2))^(1/3)*(-19899+344 
5*33^(1/2)))/(-39-13*I*3^(1/2)+9*I*11^(1/2)+9*33^(1/2)+4*I*(3*I+3^(1/2))*( 
-26+6*33^(1/2))^(1/3))/(26-6*33^(1/2)+6*x*(-13+3*33^(1/2))+(-13+13*I*3^(1/ 
2)-9*I*11^(1/2)+3*33^(1/2))*(-26+6*33^(1/2))^(1/3)+(-4-4*I*3^(1/2))*(-26+6 
*33^(1/2))^(2/3)))^(1/2)/(4*2^(2/3)-(-13+3*33^(1/2))^(1/3)+3*x*(-13+3*3...
 
3.3.81.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4 in optimal.

Time = 13.55 (sec) , antiderivative size = 3168, normalized size of antiderivative = 0.79 \[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\text {Result too large to show} \]

input
Integrate[Sqrt[9 - 4*Sqrt[2]]*x - Sqrt[2]*Sqrt[1 + 4*x + 2*x^2 + x^4],x]
 
output
(Sqrt[9 - 4*Sqrt[2]]*x^2)/2 - (Sqrt[2]*x*Sqrt[1 + 4*x + 2*x^2 + x^4])/3 - 
(2*Sqrt[2]*((6*(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])^2*(-(EllipticF[ 
ArcSin[Sqrt[-(((1 + x)*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3 
*#1 - #1^2 + #1^3 & , 3, 0]))/((x - Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]) 
*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + 
 #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(1 + Root[1 + 3*# 
1 - #1^2 + #1^3 & , 3, 0]))/((1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*( 
Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 
 0]))]*Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0]) + EllipticPi[(1 + Root[1 + 3 
*#1 - #1^2 + #1^3 & , 3, 0])/(-Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] + Roo 
t[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]), ArcSin[Sqrt[-(((1 + x)*(Root[1 + 3*#1 
 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((x - R 
oot[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 
 3, 0])))]], ((Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] - Root[1 + 3*#1 - #1^ 
2 + #1^3 & , 2, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))/((1 + Roo 
t[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])*(Root[1 + 3*#1 - #1^2 + #1^3 & , 1, 0] 
 - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0]))]*(1 + Root[1 + 3*#1 - #1^2 + #1 
^3 & , 1, 0]))*Sqrt[(x - Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 0])/((x - Root 
[1 + 3*#1 - #1^2 + #1^3 & , 1, 0])*(1 + Root[1 + 3*#1 - #1^2 + #1^3 & , 2, 
 0]))]*(-1 - Root[1 + 3*#1 - #1^2 + #1^3 & , 3, 0])*Sqrt[(x - Root[1 + ...
 
3.3.81.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {x^4+2 x^2+4 x+1}\right ) \, dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} \sqrt {9-4 \sqrt {2}} x^2-\sqrt {2} \int \sqrt {x^4+2 x^2+4 x+1}dx\)

input
Int[Sqrt[9 - 4*Sqrt[2]]*x - Sqrt[2]*Sqrt[1 + 4*x + 2*x^2 + x^4],x]
 
output
$Aborted
 

3.3.81.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.81.4 Maple [A] (warning: unable to verify)

Time = 2.31 (sec) , antiderivative size = 4640, normalized size of antiderivative = 1.15

method result size
default \(\text {Expression too large to display}\) \(4640\)
parts \(\text {Expression too large to display}\) \(4640\)
elliptic \(\text {Expression too large to display}\) \(4646\)

input
int(-2^(1/2)*(x^4+2*x^2+4*x+1)^(1/2)+x*(-1+2*2^(1/2)),x,method=_RETURNVERB 
OSE)
 
output
1/2*x^2*(-1+2*2^(1/2))-2^(1/2)*(1/3*x*(x^4+2*x^2+4*x+1)^(1/2)+4/3*(-1/6*(2 
6+6*33^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-4/3+1/2*I*3^(1/2)*(-1/3*(26+ 
6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))*((1/2*(26+6*33^(1/2))^(1/3)- 
4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+ 
6*33^(1/2))^(1/3)))*(1+x)/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^( 
1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/ 
3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)*(x 
+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3)^2*((-1/3*(26+6*3 
3^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x-1/6*(26+6*33^(1/2))^(1/3) 
+4/3/(26+6*33^(1/2))^(1/3)-1/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8 
/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26+6*33^(1/2))^ 
(1/3)+4/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1 
/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)-1/3))^(1/2)*( 
(-1/3*(26+6*33^(1/2))^(1/3)+8/3/(26+6*33^(1/2))^(1/3)+4/3)*(x-1/6*(26+6*33 
^(1/2))^(1/3)+4/3/(26+6*33^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(-1/3*(26+6*33^( 
1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(1/6*(26+6*33^(1/2))^(1/3)-4/3/(26 
+6*33^(1/2))^(1/3)+4/3-1/2*I*3^(1/2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6 
*33^(1/2))^(1/3)))/(x+1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)- 
1/3))^(1/2)/(1/2*(26+6*33^(1/2))^(1/3)-4/(26+6*33^(1/2))^(1/3)-1/2*I*3^(1/ 
2)*(-1/3*(26+6*33^(1/2))^(1/3)-8/3/(26+6*33^(1/2))^(1/3)))/(-1/3*(26+6*...
 
3.3.81.5 Fricas [F]

\[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\int { x {\left (2 \, \sqrt {2} - 1\right )} - \sqrt {2} \sqrt {x^{4} + 2 \, x^{2} + 4 \, x + 1} \,d x } \]

input
integrate(-2^(1/2)*(x^4+2*x^2+4*x+1)^(1/2)+x*(-1+2*2^(1/2)),x, algorithm=" 
fricas")
 
output
integral(2*sqrt(2)*x - sqrt(2)*sqrt(x^4 + 2*x^2 + 4*x + 1) - x, x)
 
3.3.81.6 Sympy [F]

\[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\int \left (x \left (-1 + 2 \sqrt {2}\right ) - \sqrt {2} \sqrt {x^{4} + 2 x^{2} + 4 x + 1}\right )\, dx \]

input
integrate(-2**(1/2)*(x**4+2*x**2+4*x+1)**(1/2)+x*(-1+2*2**(1/2)),x)
 
output
Integral(x*(-1 + 2*sqrt(2)) - sqrt(2)*sqrt(x**4 + 2*x**2 + 4*x + 1), x)
 
3.3.81.7 Maxima [F]

\[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\int { x {\left (2 \, \sqrt {2} - 1\right )} - \sqrt {2} \sqrt {x^{4} + 2 \, x^{2} + 4 \, x + 1} \,d x } \]

input
integrate(-2^(1/2)*(x^4+2*x^2+4*x+1)^(1/2)+x*(-1+2*2^(1/2)),x, algorithm=" 
maxima")
 
output
1/2*x^2*(2*sqrt(2) - 1) - sqrt(2)*integrate(sqrt(x^3 - x^2 + 3*x + 1)*sqrt 
(x + 1), x)
 
3.3.81.8 Giac [F]

\[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\int { x {\left (2 \, \sqrt {2} - 1\right )} - \sqrt {2} \sqrt {x^{4} + 2 \, x^{2} + 4 \, x + 1} \,d x } \]

input
integrate(-2^(1/2)*(x^4+2*x^2+4*x+1)^(1/2)+x*(-1+2*2^(1/2)),x, algorithm=" 
giac")
 
output
integrate(x*(2*sqrt(2) - 1) - sqrt(2)*sqrt(x^4 + 2*x^2 + 4*x + 1), x)
 
3.3.81.9 Mupad [F(-1)]

Timed out. \[ \int \left (\sqrt {9-4 \sqrt {2}} x-\sqrt {2} \sqrt {1+4 x+2 x^2+x^4}\right ) \, dx=\int x\,\left (2\,\sqrt {2}-1\right )-\sqrt {2}\,\sqrt {x^4+2\,x^2+4\,x+1} \,d x \]

input
int(x*(2*2^(1/2) - 1) - 2^(1/2)*(4*x + 2*x^2 + x^4 + 1)^(1/2),x)
 
output
int(x*(2*2^(1/2) - 1) - 2^(1/2)*(4*x + 2*x^2 + x^4 + 1)^(1/2), x)