3.2.27 \(\int \frac {x^{3/2}}{(a+b x^2)^2} \, dx\) [127]

3.2.27.1 Optimal result
3.2.27.2 Mathematica [A] (verified)
3.2.27.3 Rubi [A] (verified)
3.2.27.4 Maple [A] (verified)
3.2.27.5 Fricas [C] (verification not implemented)
3.2.27.6 Sympy [B] (verification not implemented)
3.2.27.7 Maxima [B] (verification not implemented)
3.2.27.8 Giac [B] (verification not implemented)
3.2.27.9 Mupad [B] (verification not implemented)

3.2.27.1 Optimal result

Integrand size = 15, antiderivative size = 124 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{\frac {a}{b}} \sqrt {x}}{\sqrt {\frac {a}{b}}-x}\right )+\log \left (\frac {\sqrt {\frac {a}{b}}+\sqrt {2} \sqrt [4]{\frac {a}{b}} \sqrt {x}+x}{\sqrt {a+b x^2}}\right )}{4 \sqrt {2} \left (\frac {a}{b}\right )^{3/4} b^2} \]

output
-1/2*x^(1/2)/b/(b*x^2+a)+1/8/b^2/(a/b)^(3/4)*2^(1/2)*(ln((x+(a/b)^(1/4)*2^ 
(1/2)*x^(1/2)+(a/b)^(1/2))/(b*x^2+a)^(1/2))+arctan((a/b)^(1/4)*2^(1/2)*x^( 
1/2)/((a/b)^(1/2)-x)))
 
3.2.27.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.02 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=\frac {-\frac {4 \sqrt [4]{b} \sqrt {x}}{a+b x^2}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{a^{3/4}}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{a^{3/4}}}{8 b^{5/4}} \]

input
Integrate[x^(3/2)/(a + b*x^2)^2,x]
 
output
((-4*b^(1/4)*Sqrt[x])/(a + b*x^2) - (Sqrt[2]*ArcTan[(Sqrt[a] - Sqrt[b]*x)/ 
(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/a^(3/4) + (Sqrt[2]*ArcTanh[(Sqrt[2]*a^ 
(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/a^(3/4))/(8*b^(5/4))
 
3.2.27.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.94, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {252, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\int \frac {1}{\sqrt {x} \left (b x^2+a\right )}dx}{4 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\int \frac {1}{b x^2+a}d\sqrt {x}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\int \frac {\sqrt {b} x+\sqrt {a}}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\int \frac {\sqrt {a}-\sqrt {b} x}{b x^2+a}d\sqrt {x}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{b} \left (x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}\right )}{\sqrt [4]{b} \left (x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a}-2 \sqrt [4]{b} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}+\sqrt [4]{a}}{x+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {x}}{\sqrt [4]{b}}+\frac {\sqrt {a}}{\sqrt {b}}}d\sqrt {x}}{2 \sqrt [4]{a} \sqrt {b}}}{2 \sqrt {a}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {a}}}{2 b}-\frac {\sqrt {x}}{2 b \left (a+b x^2\right )}\)

input
Int[x^(3/2)/(a + b*x^2)^2,x]
 
output
-1/2*Sqrt[x]/(b*(a + b*x^2)) + ((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^ 
(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a 
^(1/4)]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[a]) + (-1/2*Log[Sqrt[a] - Sqrt[ 
2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(Sqrt[2]*a^(1/4)*b^(1/4)) + Log[Sq 
rt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]/(2*Sqrt[2]*a^(1/4)*b^ 
(1/4)))/(2*Sqrt[a]))/(2*b)
 

3.2.27.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.2.27.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.02

method result size
derivativedivides \(-\frac {\sqrt {x}}{2 b \left (x^{2} b +a \right )}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b a}\) \(127\)
default \(-\frac {\sqrt {x}}{2 b \left (x^{2} b +a \right )}+\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b a}\) \(127\)

input
int(x^(3/2)/(b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
-1/2*x^(1/2)/b/(b*x^2+a)+1/16/b*(a/b)^(1/4)/a*2^(1/2)*(ln((x+(a/b)^(1/4)*2 
^(1/2)*x^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2)))+2 
*arctan(1/(a/b)^(1/4)*2^(1/2)*x^(1/2)+1)+2*arctan(1/(a/b)^(1/4)*2^(1/2)*x^ 
(1/2)-1))
 
3.2.27.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.54 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=\frac {{\left (b^{2} x^{2} + a b\right )} \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (a b \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (-i \, b^{2} x^{2} - i \, a b\right )} \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (i \, a b \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (i \, b^{2} x^{2} + i \, a b\right )} \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (-i \, a b \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (b^{2} x^{2} + a b\right )} \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} \log \left (-a b \left (-\frac {1}{a^{3} b^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 4 \, \sqrt {x}}{8 \, {\left (b^{2} x^{2} + a b\right )}} \]

input
integrate(x^(3/2)/(b*x^2+a)^2,x, algorithm="fricas")
 
output
1/8*((b^2*x^2 + a*b)*(-1/(a^3*b^5))^(1/4)*log(a*b*(-1/(a^3*b^5))^(1/4) + s 
qrt(x)) - (-I*b^2*x^2 - I*a*b)*(-1/(a^3*b^5))^(1/4)*log(I*a*b*(-1/(a^3*b^5 
))^(1/4) + sqrt(x)) - (I*b^2*x^2 + I*a*b)*(-1/(a^3*b^5))^(1/4)*log(-I*a*b* 
(-1/(a^3*b^5))^(1/4) + sqrt(x)) - (b^2*x^2 + a*b)*(-1/(a^3*b^5))^(1/4)*log 
(-a*b*(-1/(a^3*b^5))^(1/4) + sqrt(x)) - 4*sqrt(x))/(b^2*x^2 + a*b)
 
3.2.27.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (95) = 190\).

Time = 34.06 (sec) , antiderivative size = 323, normalized size of antiderivative = 2.60 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=\begin {cases} \frac {\tilde {\infty }}{x^{\frac {3}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {2 x^{\frac {5}{2}}}{5 a^{2}} & \text {for}\: b = 0 \\- \frac {2}{3 b^{2} x^{\frac {3}{2}}} & \text {for}\: a = 0 \\- \frac {4 a \sqrt {x}}{8 a^{2} b + 8 a b^{2} x^{2}} - \frac {a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} + \frac {a \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} + \frac {2 a \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} - \frac {b x^{2} \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} + \frac {b x^{2} \sqrt [4]{- \frac {a}{b}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} + \frac {2 b x^{2} \sqrt [4]{- \frac {a}{b}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{8 a^{2} b + 8 a b^{2} x^{2}} & \text {otherwise} \end {cases} \]

input
integrate(x**(3/2)/(b*x**2+a)**2,x)
 
output
Piecewise((zoo/x**(3/2), Eq(a, 0) & Eq(b, 0)), (2*x**(5/2)/(5*a**2), Eq(b, 
 0)), (-2/(3*b**2*x**(3/2)), Eq(a, 0)), (-4*a*sqrt(x)/(8*a**2*b + 8*a*b**2 
*x**2) - a*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**2*b + 8*a*b**2 
*x**2) + a*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**2*b + 8*a*b**2 
*x**2) + 2*a*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(8*a**2*b + 8*a*b** 
2*x**2) - b*x**2*(-a/b)**(1/4)*log(sqrt(x) - (-a/b)**(1/4))/(8*a**2*b + 8* 
a*b**2*x**2) + b*x**2*(-a/b)**(1/4)*log(sqrt(x) + (-a/b)**(1/4))/(8*a**2*b 
 + 8*a*b**2*x**2) + 2*b*x**2*(-a/b)**(1/4)*atan(sqrt(x)/(-a/b)**(1/4))/(8* 
a**2*b + 8*a*b**2*x**2), True))
 
3.2.27.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 195 vs. \(2 (97) = 194\).

Time = 0.29 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.57 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}}{16 \, b} - \frac {\sqrt {x}}{2 \, {\left (b^{2} x^{2} + a b\right )}} \]

input
integrate(x^(3/2)/(b*x^2+a)^2,x, algorithm="maxima")
 
output
1/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sq 
rt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)* 
arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqr 
t(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqrt(2)*log(sqrt(2)*a^(1/ 
4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)) - sqrt(2)*log( 
-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4))) 
/b - 1/2*sqrt(x)/(b^2*x^2 + a*b)
 
3.2.27.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 199 vs. \(2 (97) = 194\).

Time = 0.27 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.60 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=\frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a b^{2}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a b^{2}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a b^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{16 \, a b^{2}} - \frac {\sqrt {x}}{2 \, {\left (b x^{2} + a\right )} b} \]

input
integrate(x^(3/2)/(b*x^2+a)^2,x, algorithm="giac")
 
output
1/8*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt 
(x))/(a/b)^(1/4))/(a*b^2) + 1/8*sqrt(2)*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^2) + 1/16*sqrt(2)*(a*b 
^3)^(1/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^2) - 1/16* 
sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a 
*b^2) - 1/2*sqrt(x)/((b*x^2 + a)*b)
 
3.2.27.9 Mupad [B] (verification not implemented)

Time = 16.13 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.52 \[ \int \frac {x^{3/2}}{\left (a+b x^2\right )^2} \, dx=-\frac {\sqrt {x}}{2\,b\,\left (b\,x^2+a\right )}-\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{3/4}\,b^{5/4}}-\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )}{4\,{\left (-a\right )}^{3/4}\,b^{5/4}} \]

input
int(x^(3/2)/(a + b*x^2)^2,x)
 
output
- x^(1/2)/(2*b*(a + b*x^2)) - atan((b^(1/4)*x^(1/2))/(-a)^(1/4))/(4*(-a)^( 
3/4)*b^(5/4)) - atanh((b^(1/4)*x^(1/2))/(-a)^(1/4))/(4*(-a)^(3/4)*b^(5/4))