3.2.51 \(\int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx\) [151]

3.2.51.1 Optimal result
3.2.51.2 Mathematica [A] (verified)
3.2.51.3 Rubi [A] (verified)
3.2.51.4 Maple [F]
3.2.51.5 Fricas [B] (verification not implemented)
3.2.51.6 Sympy [F]
3.2.51.7 Maxima [F]
3.2.51.8 Giac [B] (verification not implemented)
3.2.51.9 Mupad [F(-1)]

3.2.51.1 Optimal result

Integrand size = 15, antiderivative size = 79 \[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=\frac {-\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt [3]{a+b x}}{2 \sqrt [3]{a}+\sqrt [3]{a+b x}}\right )+\frac {3}{2} \log \left (\frac {-\sqrt [3]{a}+\sqrt [3]{a+b x}}{\sqrt [3]{x}}\right )}{\sqrt [3]{a^2}} \]

output
1/(a^2)^(1/3)*(3/2*ln(((b*x+a)^(1/3)-a^(1/3))/x^(1/3))-3^(1/2)*arctan(3^(1 
/2)*(b*x+a)^(1/3)/((b*x+a)^(1/3)+2*a^(1/3))))
 
3.2.51.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.43 \[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=-\frac {(a+b x)^{2/3} \left (2 \sqrt {3} \arctan \left (\frac {1+\frac {2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )-2 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )+\log \left (a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x}+(a+b x)^{2/3}\right )\right )}{2 a^{2/3} \sqrt [3]{(a+b x)^2}} \]

input
Integrate[1/(x*((a + b*x)^2)^(1/3)),x]
 
output
-1/2*((a + b*x)^(2/3)*(2*Sqrt[3]*ArcTan[(1 + (2*(a + b*x)^(1/3))/a^(1/3))/ 
Sqrt[3]] - 2*Log[a^(1/3) - (a + b*x)^(1/3)] + Log[a^(2/3) + a^(1/3)*(a + b 
*x)^(1/3) + (a + b*x)^(2/3)]))/(a^(2/3)*((a + b*x)^2)^(1/3))
 
3.2.51.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.23, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {2008, 69, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx\)

\(\Big \downarrow \) 2008

\(\displaystyle \frac {(a+b x)^{2/3} \int \frac {1}{x (a+b x)^{2/3}}dx}{\sqrt [3]{(a+b x)^2}}\)

\(\Big \downarrow \) 69

\(\displaystyle \frac {(a+b x)^{2/3} \left (-\frac {3 \int \frac {1}{\sqrt [3]{a}-\sqrt [3]{a+b x}}d\sqrt [3]{a+b x}}{2 a^{2/3}}-\frac {3 \int \frac {1}{a^{2/3}+\sqrt [3]{a+b x} \sqrt [3]{a}+(a+b x)^{2/3}}d\sqrt [3]{a+b x}}{2 \sqrt [3]{a}}-\frac {\log (x)}{2 a^{2/3}}\right )}{\sqrt [3]{(a+b x)^2}}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {(a+b x)^{2/3} \left (-\frac {3 \int \frac {1}{a^{2/3}+\sqrt [3]{a+b x} \sqrt [3]{a}+(a+b x)^{2/3}}d\sqrt [3]{a+b x}}{2 \sqrt [3]{a}}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac {\log (x)}{2 a^{2/3}}\right )}{\sqrt [3]{(a+b x)^2}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(a+b x)^{2/3} \left (\frac {3 \int \frac {1}{-(a+b x)^{2/3}-3}d\left (\frac {2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}+1\right )}{a^{2/3}}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac {\log (x)}{2 a^{2/3}}\right )}{\sqrt [3]{(a+b x)^2}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(a+b x)^{2/3} \left (-\frac {\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}+1}{\sqrt {3}}\right )}{a^{2/3}}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac {\log (x)}{2 a^{2/3}}\right )}{\sqrt [3]{(a+b x)^2}}\)

input
Int[1/(x*((a + b*x)^2)^(1/3)),x]
 
output
((a + b*x)^(2/3)*(-((Sqrt[3]*ArcTan[(1 + (2*(a + b*x)^(1/3))/a^(1/3))/Sqrt 
[3]])/a^(2/3)) - Log[x]/(2*a^(2/3)) + (3*Log[a^(1/3) - (a + b*x)^(1/3)])/( 
2*a^(2/3))))/((a + b*x)^2)^(1/3)
 

3.2.51.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 69
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2), 
 x] + (-Simp[3/(2*b*q)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] - Simp[3/(2*b*q^2)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 2008
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, 
x]], b = Rt[Coeff[Px, x, Expon[Px, x]], Expon[Px, x]]}, Simp[((a + b*x)^Exp 
on[Px, x])^p/(a + b*x)^(Expon[Px, x]*p)   Int[u*(a + b*x)^(Expon[Px, x]*p), 
 x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /;  !IntegerQ[p] && PolyQ[Px, x 
] && GtQ[Expon[Px, x], 1] && NeQ[Coeff[Px, x, 0], 0]
 
3.2.51.4 Maple [F]

\[\int \frac {1}{x \left (\left (b x +a \right )^{2}\right )^{\frac {1}{3}}}d x\]

input
int(1/x/((b*x+a)^2)^(1/3),x)
 
output
int(1/x/((b*x+a)^2)^(1/3),x)
 
3.2.51.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 225 vs. \(2 (60) = 120\).

Time = 0.26 (sec) , antiderivative size = 225, normalized size of antiderivative = 2.85 \[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=\frac {2 \, \sqrt {3} {\left (a^{2}\right )}^{\frac {1}{6}} a \arctan \left (\frac {\sqrt {3} {\left (a^{2}\right )}^{\frac {1}{6}} {\left ({\left (a^{2}\right )}^{\frac {1}{3}} {\left (b x + a\right )} + 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {1}{3}} a\right )}}{3 \, {\left (a b x + a^{2}\right )}}\right ) - {\left (a^{2}\right )}^{\frac {2}{3}} \log \left (\frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {2}{3}} a^{2} + {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {1}{3}} {\left (a b x + a^{2}\right )} {\left (a^{2}\right )}^{\frac {1}{3}} + {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} {\left (a^{2}\right )}^{\frac {2}{3}}}{b^{2} x^{2} + 2 \, a b x + a^{2}}\right ) + 2 \, {\left (a^{2}\right )}^{\frac {2}{3}} \log \left (-\frac {{\left (a^{2}\right )}^{\frac {1}{3}} {\left (b x + a\right )} - {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )}^{\frac {1}{3}} a}{b x + a}\right )}{2 \, a^{2}} \]

input
integrate(1/x/((b*x+a)^2)^(1/3),x, algorithm="fricas")
 
output
1/2*(2*sqrt(3)*(a^2)^(1/6)*a*arctan(1/3*sqrt(3)*(a^2)^(1/6)*((a^2)^(1/3)*( 
b*x + a) + 2*(b^2*x^2 + 2*a*b*x + a^2)^(1/3)*a)/(a*b*x + a^2)) - (a^2)^(2/ 
3)*log(((b^2*x^2 + 2*a*b*x + a^2)^(2/3)*a^2 + (b^2*x^2 + 2*a*b*x + a^2)^(1 
/3)*(a*b*x + a^2)*(a^2)^(1/3) + (b^2*x^2 + 2*a*b*x + a^2)*(a^2)^(2/3))/(b^ 
2*x^2 + 2*a*b*x + a^2)) + 2*(a^2)^(2/3)*log(-((a^2)^(1/3)*(b*x + a) - (b^2 
*x^2 + 2*a*b*x + a^2)^(1/3)*a)/(b*x + a)))/a^2
 
3.2.51.6 Sympy [F]

\[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=\int \frac {1}{x \sqrt [3]{\left (a + b x\right )^{2}}}\, dx \]

input
integrate(1/x/((b*x+a)**2)**(1/3),x)
 
output
Integral(1/(x*((a + b*x)**2)**(1/3)), x)
 
3.2.51.7 Maxima [F]

\[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=\int { \frac {1}{{\left ({\left (b x + a\right )}^{2}\right )}^{\frac {1}{3}} x} \,d x } \]

input
integrate(1/x/((b*x+a)^2)^(1/3),x, algorithm="maxima")
 
output
integrate(1/(((b*x + a)^2)^(1/3)*x), x)
 
3.2.51.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (60) = 120\).

Time = 3.15 (sec) , antiderivative size = 219, normalized size of antiderivative = 2.77 \[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=-\frac {\sqrt {3} \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x \mathrm {sgn}\left (b x + a\right ) + a \mathrm {sgn}\left (b x + a\right )\right )}^{\frac {1}{3}} + \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}}\right )}}{3 \, \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}}}\right )}{a \mathrm {sgn}\left (b x + a\right )} - \frac {\left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}} \log \left ({\left (b x \mathrm {sgn}\left (b x + a\right ) + a \mathrm {sgn}\left (b x + a\right )\right )}^{\frac {2}{3}} + {\left (b x \mathrm {sgn}\left (b x + a\right ) + a \mathrm {sgn}\left (b x + a\right )\right )}^{\frac {1}{3}} \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}} + \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {2}{3}}\right )}{2 \, a \mathrm {sgn}\left (b x + a\right )} + \frac {\left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}} \log \left ({\left | {\left (b x \mathrm {sgn}\left (b x + a\right ) + a \mathrm {sgn}\left (b x + a\right )\right )}^{\frac {1}{3}} - \left (a \mathrm {sgn}\left (b x + a\right )\right )^{\frac {1}{3}} \right |}\right )}{a \mathrm {sgn}\left (b x + a\right )} \]

input
integrate(1/x/((b*x+a)^2)^(1/3),x, algorithm="giac")
 
output
-sqrt(3)*(a*sgn(b*x + a))^(1/3)*arctan(1/3*sqrt(3)*(2*(b*x*sgn(b*x + a) + 
a*sgn(b*x + a))^(1/3) + (a*sgn(b*x + a))^(1/3))/(a*sgn(b*x + a))^(1/3))/(a 
*sgn(b*x + a)) - 1/2*(a*sgn(b*x + a))^(1/3)*log((b*x*sgn(b*x + a) + a*sgn( 
b*x + a))^(2/3) + (b*x*sgn(b*x + a) + a*sgn(b*x + a))^(1/3)*(a*sgn(b*x + a 
))^(1/3) + (a*sgn(b*x + a))^(2/3))/(a*sgn(b*x + a)) + (a*sgn(b*x + a))^(1/ 
3)*log(abs((b*x*sgn(b*x + a) + a*sgn(b*x + a))^(1/3) - (a*sgn(b*x + a))^(1 
/3)))/(a*sgn(b*x + a))
 
3.2.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sqrt [3]{(a+b x)^2}} \, dx=\int \frac {1}{x\,{\left ({\left (a+b\,x\right )}^2\right )}^{1/3}} \,d x \]

input
int(1/(x*((a + b*x)^2)^(1/3)),x)
 
output
int(1/(x*((a + b*x)^2)^(1/3)), x)