3.2.11 \(\int \frac {x^2}{a+b (c+d x)^4} \, dx\) [111]

3.2.11.1 Optimal result
3.2.11.2 Mathematica [C] (verified)
3.2.11.3 Rubi [A] (verified)
3.2.11.4 Maple [C] (verified)
3.2.11.5 Fricas [C] (verification not implemented)
3.2.11.6 Sympy [A] (verification not implemented)
3.2.11.7 Maxima [F]
3.2.11.8 Giac [F]
3.2.11.9 Mupad [B] (verification not implemented)

3.2.11.1 Optimal result

Integrand size = 17, antiderivative size = 318 \[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=-\frac {c \arctan \left (\frac {\sqrt {b} (c+d x)^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b} d^3}-\frac {\left (\sqrt {a}+\sqrt {b} c^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4} d^3}+\frac {\left (\sqrt {a}+\sqrt {b} c^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4} d^3}+\frac {\left (\sqrt {a}-\sqrt {b} c^2\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} (c+d x)+\sqrt {b} (c+d x)^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4} d^3}-\frac {\left (\sqrt {a}-\sqrt {b} c^2\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} (c+d x)+\sqrt {b} (c+d x)^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4} d^3} \]

output
-c*arctan((d*x+c)^2*b^(1/2)/a^(1/2))/d^3/a^(1/2)/b^(1/2)+1/8*ln(-a^(1/4)*b 
^(1/4)*(d*x+c)*2^(1/2)+a^(1/2)+(d*x+c)^2*b^(1/2))*(a^(1/2)-b^(1/2)*c^2)/a^ 
(3/4)/b^(3/4)/d^3*2^(1/2)-1/8*ln(a^(1/4)*b^(1/4)*(d*x+c)*2^(1/2)+a^(1/2)+( 
d*x+c)^2*b^(1/2))*(a^(1/2)-b^(1/2)*c^2)/a^(3/4)/b^(3/4)/d^3*2^(1/2)+1/4*ar 
ctan(-1+b^(1/4)*(d*x+c)*2^(1/2)/a^(1/4))*(a^(1/2)+b^(1/2)*c^2)/a^(3/4)/b^( 
3/4)/d^3*2^(1/2)+1/4*arctan(1+b^(1/4)*(d*x+c)*2^(1/2)/a^(1/4))*(a^(1/2)+b^ 
(1/2)*c^2)/a^(3/4)/b^(3/4)/d^3*2^(1/2)
 
3.2.11.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.33 \[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\frac {\text {RootSum}\left [a+b c^4+4 b c^3 d \text {$\#$1}+6 b c^2 d^2 \text {$\#$1}^2+4 b c d^3 \text {$\#$1}^3+b d^4 \text {$\#$1}^4\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}^2}{c^3+3 c^2 d \text {$\#$1}+3 c d^2 \text {$\#$1}^2+d^3 \text {$\#$1}^3}\&\right ]}{4 b d} \]

input
Integrate[x^2/(a + b*(c + d*x)^4),x]
 
output
RootSum[a + b*c^4 + 4*b*c^3*d*#1 + 6*b*c^2*d^2*#1^2 + 4*b*c*d^3*#1^3 + b*d 
^4*#1^4 & , (Log[x - #1]*#1^2)/(c^3 + 3*c^2*d*#1 + 3*c*d^2*#1^2 + d^3*#1^3 
) & ]/(4*b*d)
 
3.2.11.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 307, normalized size of antiderivative = 0.97, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {896, 2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{a+b (c+d x)^4} \, dx\)

\(\Big \downarrow \) 896

\(\displaystyle \frac {\int \frac {d^2 x^2}{b (c+d x)^4+a}d(c+d x)}{d^3}\)

\(\Big \downarrow \) 2415

\(\displaystyle \frac {\int \left (\frac {c^2+(c+d x)^2}{b (c+d x)^4+a}-\frac {2 c (c+d x)}{b (c+d x)^4+a}\right )d(c+d x)}{d^3}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {\left (\sqrt {a}+\sqrt {b} c^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a}+\sqrt {b} c^2\right ) \arctan \left (\frac {\sqrt {2} \sqrt [4]{b} (c+d x)}{\sqrt [4]{a}}+1\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {a}-\sqrt {b} c^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} (c+d x)+\sqrt {a}+\sqrt {b} (c+d x)^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {a}-\sqrt {b} c^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} (c+d x)+\sqrt {a}+\sqrt {b} (c+d x)^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}-\frac {c \arctan \left (\frac {\sqrt {b} (c+d x)^2}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {b}}}{d^3}\)

input
Int[x^2/(a + b*(c + d*x)^4),x]
 
output
(-((c*ArcTan[(Sqrt[b]*(c + d*x)^2)/Sqrt[a]])/(Sqrt[a]*Sqrt[b])) - ((Sqrt[a 
] + Sqrt[b]*c^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*(c + d*x))/a^(1/4)])/(2*Sqrt[ 
2]*a^(3/4)*b^(3/4)) + ((Sqrt[a] + Sqrt[b]*c^2)*ArcTan[1 + (Sqrt[2]*b^(1/4) 
*(c + d*x))/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[a] - Sqrt[b]*c^ 
2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*(c + d*x) + Sqrt[b]*(c + d*x)^2]) 
/(4*Sqrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[a] - Sqrt[b]*c^2)*Log[Sqrt[a] + Sqrt 
[2]*a^(1/4)*b^(1/4)*(c + d*x) + Sqrt[b]*(c + d*x)^2])/(4*Sqrt[2]*a^(3/4)*b 
^(3/4)))/d^3
 

3.2.11.3.1 Defintions of rubi rules used

rule 896
Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coeff 
icient[v, x, 0], d = Coefficient[v, x, 1]}, Simp[1/d^(m + 1)   Subst[Int[Si 
mplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0]] /; 
 FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
3.2.11.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.08 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.31

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{4} \textit {\_Z}^{4}+4 b c \,d^{3} \textit {\_Z}^{3}+6 b \,c^{2} d^{2} \textit {\_Z}^{2}+4 b \,c^{3} d \textit {\_Z} +b \,c^{4}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{d^{3} \textit {\_R}^{3}+3 c \,d^{2} \textit {\_R}^{2}+3 c^{2} d \textit {\_R} +c^{3}}}{4 b d}\) \(97\)
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{4} \textit {\_Z}^{4}+4 b c \,d^{3} \textit {\_Z}^{3}+6 b \,c^{2} d^{2} \textit {\_Z}^{2}+4 b \,c^{3} d \textit {\_Z} +b \,c^{4}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (x -\textit {\_R} \right )}{d^{3} \textit {\_R}^{3}+3 c \,d^{2} \textit {\_R}^{2}+3 c^{2} d \textit {\_R} +c^{3}}}{4 b d}\) \(97\)

input
int(x^2/(a+b*(d*x+c)^4),x,method=_RETURNVERBOSE)
 
output
1/4/b/d*sum(_R^2/(_R^3*d^3+3*_R^2*c*d^2+3*_R*c^2*d+c^3)*ln(x-_R),_R=RootOf 
(_Z^4*b*d^4+4*_Z^3*b*c*d^3+6*_Z^2*b*c^2*d^2+4*_Z*b*c^3*d+b*c^4+a))
 
3.2.11.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 58.70 (sec) , antiderivative size = 61993, normalized size of antiderivative = 194.95 \[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\text {Too large to display} \]

input
integrate(x^2/(a+b*(d*x+c)^4),x, algorithm="fricas")
 
output
Too large to include
 
3.2.11.6 Sympy [A] (verification not implemented)

Time = 1.60 (sec) , antiderivative size = 274, normalized size of antiderivative = 0.86 \[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\operatorname {RootSum} {\left (256 t^{4} a^{3} b^{3} d^{12} + 192 t^{2} a^{2} b^{2} c^{2} d^{6} + t \left (- 32 a^{2} b c d^{3} + 32 a b^{2} c^{5} d^{3}\right ) + a^{2} + 2 a b c^{4} + b^{2} c^{8}, \left ( t \mapsto t \log {\left (x + \frac {64 t^{3} a^{4} b^{2} d^{9} + 448 t^{3} a^{3} b^{3} c^{4} d^{9} + 160 t^{2} a^{3} b^{2} c^{3} d^{6} - 32 t^{2} a^{2} b^{3} c^{7} d^{6} + 60 t a^{3} b c^{2} d^{3} + 256 t a^{2} b^{2} c^{6} d^{3} + 4 t a b^{3} c^{10} d^{3} - 5 a^{3} c - 9 a^{2} b c^{5} - 3 a b^{2} c^{9} + b^{3} c^{13}}{a^{3} d - 33 a^{2} b c^{4} d - 33 a b^{2} c^{8} d + b^{3} c^{12} d} \right )} \right )\right )} \]

input
integrate(x**2/(a+b*(d*x+c)**4),x)
 
output
RootSum(256*_t**4*a**3*b**3*d**12 + 192*_t**2*a**2*b**2*c**2*d**6 + _t*(-3 
2*a**2*b*c*d**3 + 32*a*b**2*c**5*d**3) + a**2 + 2*a*b*c**4 + b**2*c**8, La 
mbda(_t, _t*log(x + (64*_t**3*a**4*b**2*d**9 + 448*_t**3*a**3*b**3*c**4*d* 
*9 + 160*_t**2*a**3*b**2*c**3*d**6 - 32*_t**2*a**2*b**3*c**7*d**6 + 60*_t* 
a**3*b*c**2*d**3 + 256*_t*a**2*b**2*c**6*d**3 + 4*_t*a*b**3*c**10*d**3 - 5 
*a**3*c - 9*a**2*b*c**5 - 3*a*b**2*c**9 + b**3*c**13)/(a**3*d - 33*a**2*b* 
c**4*d - 33*a*b**2*c**8*d + b**3*c**12*d))))
 
3.2.11.7 Maxima [F]

\[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\int { \frac {x^{2}}{{\left (d x + c\right )}^{4} b + a} \,d x } \]

input
integrate(x^2/(a+b*(d*x+c)^4),x, algorithm="maxima")
 
output
integrate(x^2/((d*x + c)^4*b + a), x)
 
3.2.11.8 Giac [F]

\[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\int { \frac {x^{2}}{{\left (d x + c\right )}^{4} b + a} \,d x } \]

input
integrate(x^2/(a+b*(d*x+c)^4),x, algorithm="giac")
 
output
integrate(x^2/((d*x + c)^4*b + a), x)
 
3.2.11.9 Mupad [B] (verification not implemented)

Time = 9.27 (sec) , antiderivative size = 625, normalized size of antiderivative = 1.97 \[ \int \frac {x^2}{a+b (c+d x)^4} \, dx=\sum _{k=1}^4\ln \left (-b\,d^4\,\left (a+b\,c^4+4\,b\,c^3\,d\,x+\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )\,b^2\,c^5\,d^3\,4+\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )\,b^2\,c^4\,d^4\,x\,4-\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )\,a\,b\,c\,d^3\,20-\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )\,a\,b\,d^4\,x\,4+{\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )}^2\,a\,b^2\,c^2\,d^6\,48+{\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right )}^2\,a\,b^2\,c\,d^7\,x\,32\right )\right )\,\mathrm {root}\left (256\,a^3\,b^3\,d^{12}\,z^4+192\,a^2\,b^2\,c^2\,d^6\,z^2+32\,a\,b^2\,c^5\,d^3\,z-32\,a^2\,b\,c\,d^3\,z+2\,a\,b\,c^4+b^2\,c^8+a^2,z,k\right ) \]

input
int(x^2/(a + b*(c + d*x)^4),x)
 
output
symsum(log(-b*d^4*(a + b*c^4 + 4*b*c^3*d*x + 4*root(256*a^3*b^3*d^12*z^4 + 
 192*a^2*b^2*c^2*d^6*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c 
^4 + b^2*c^8 + a^2, z, k)*b^2*c^5*d^3 + 4*root(256*a^3*b^3*d^12*z^4 + 192* 
a^2*b^2*c^2*d^6*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + 
b^2*c^8 + a^2, z, k)*b^2*c^4*d^4*x - 20*root(256*a^3*b^3*d^12*z^4 + 192*a^ 
2*b^2*c^2*d^6*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + b^ 
2*c^8 + a^2, z, k)*a*b*c*d^3 - 4*root(256*a^3*b^3*d^12*z^4 + 192*a^2*b^2*c 
^2*d^6*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + b^2*c^8 + 
 a^2, z, k)*a*b*d^4*x + 48*root(256*a^3*b^3*d^12*z^4 + 192*a^2*b^2*c^2*d^6 
*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + b^2*c^8 + a^2, 
z, k)^2*a*b^2*c^2*d^6 + 32*root(256*a^3*b^3*d^12*z^4 + 192*a^2*b^2*c^2*d^6 
*z^2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + b^2*c^8 + a^2, 
z, k)^2*a*b^2*c*d^7*x))*root(256*a^3*b^3*d^12*z^4 + 192*a^2*b^2*c^2*d^6*z^ 
2 + 32*a*b^2*c^5*d^3*z - 32*a^2*b*c*d^3*z + 2*a*b*c^4 + b^2*c^8 + a^2, z, 
k), k, 1, 4)