3.2.43 \(\int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx\) [143]

3.2.43.1 Optimal result
3.2.43.2 Mathematica [C] (verified)
3.2.43.3 Rubi [A] (verified)
3.2.43.4 Maple [C] (verified)
3.2.43.5 Fricas [F(-1)]
3.2.43.6 Sympy [A] (verification not implemented)
3.2.43.7 Maxima [F]
3.2.43.8 Giac [F]
3.2.43.9 Mupad [B] (verification not implemented)

3.2.43.1 Optimal result

Integrand size = 26, antiderivative size = 395 \[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=-\frac {\sqrt [3]{-2} \left (1+\sqrt [3]{-2} 3^{2/3}\right ) \arctan \left (\frac {3 (-2)^{2/3} \sqrt [3]{3}+2 x}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{3^{5/6} \sqrt {8+9 i \sqrt [3]{2} \sqrt [6]{3}+3 \sqrt [3]{2} 3^{2/3}}}+\frac {\sqrt [6]{\frac {3}{2}} \left (1-(-3)^{2/3} \sqrt [3]{2}\right ) \arctan \left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{-3}-\sqrt [3]{2} x\right )}{\sqrt {3 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{\left (1+\sqrt [3]{-1}\right )^2 \sqrt {4-3 (-3)^{2/3} \sqrt [3]{2}}}-\frac {\left (1-\sqrt [3]{2} 3^{2/3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{3}+\sqrt [3]{2} x\right )}{\sqrt {3 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )}}\right )}{\sqrt [6]{2} 3^{5/6} \sqrt {-4+3 \sqrt [3]{2} 3^{2/3}}}+\frac {1}{216} \left (36+2^{2/3} \sqrt [3]{3} \left (1+i \sqrt {3}\right )\right ) \log \left (6-3 \sqrt [3]{-3} 2^{2/3} x+x^2\right )+\frac {1}{108} \left (18-(-2)^{2/3} \sqrt [3]{3}\right ) \log \left (6+3 (-2)^{2/3} \sqrt [3]{3} x+x^2\right )+\frac {1}{108} \left (18-2^{2/3} \sqrt [3]{3}\right ) \log \left (6+3\ 2^{2/3} \sqrt [3]{3} x+x^2\right ) \]

output
1/108*(18-(-2)^(2/3)*3^(1/3))*ln(6+3*(-2)^(2/3)*3^(1/3)*x+x^2)+1/108*(18-2 
^(2/3)*3^(1/3))*ln(6+3*2^(2/3)*3^(1/3)*x+x^2)+1/216*ln(6-3*(-3)^(1/3)*2^(2 
/3)*x+x^2)*(36+2^(2/3)*3^(1/3)*(1+I*3^(1/2)))+1/2*3^(1/6)*2^(5/6)*(1-(-3)^ 
(2/3)*2^(1/3))*arctan(2^(1/6)*(3*(-3)^(1/3)-2^(1/3)*x)/(12-9*(-3)^(2/3)*2^ 
(1/3))^(1/2))/(1+(-1)^(1/3))^2/(4-3*(-3)^(2/3)*2^(1/3))^(1/2)-1/6*(1-2^(1/ 
3)*3^(2/3))*arctanh(2^(1/6)*(3*3^(1/3)+2^(1/3)*x)/(-12+9*2^(1/3)*3^(2/3))^ 
(1/2))*2^(5/6)*3^(1/6)/(-4+3*2^(1/3)*3^(2/3))^(1/2)-1/3*(-2)^(1/3)*(1+(-2) 
^(1/3)*3^(2/3))*arctan((3*(-2)^(2/3)*3^(1/3)+2*x)/(24+18*(-2)^(1/3)*3^(2/3 
))^(1/2))*3^(1/6)/(8+9*I*2^(1/3)*3^(1/6)+3*2^(1/3)*3^(2/3))^(1/2)
 
3.2.43.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.15 \[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\frac {1}{6} \text {RootSum}\left [216+108 \text {$\#$1}^2+324 \text {$\#$1}^3+18 \text {$\#$1}^4+\text {$\#$1}^6\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}^4}{36+162 \text {$\#$1}+12 \text {$\#$1}^2+\text {$\#$1}^4}\&\right ] \]

input
Integrate[x^5/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6),x]
 
output
RootSum[216 + 108*#1^2 + 324*#1^3 + 18*#1^4 + #1^6 & , (Log[x - #1]*#1^4)/ 
(36 + 162*#1 + 12*#1^2 + #1^4) & ]/6
 
3.2.43.3 Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 402, normalized size of antiderivative = 1.02, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2466, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5}{x^6+18 x^4+324 x^3+108 x^2+216} \, dx\)

\(\Big \downarrow \) 2466

\(\displaystyle 1259712 \int \left (\frac {(-1)^{2/3} \left (\left (1-3 (-3)^{2/3} \sqrt [3]{2}\right ) x+3 \sqrt [3]{-3} 2^{2/3}\right )}{3779136 \sqrt [3]{2} 3^{2/3} \left (1+\sqrt [3]{-1}\right )^2 \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}+\frac {(-1)^{2/3} \left (3 (-2)^{2/3} \sqrt [3]{3}-\left (1+3 \sqrt [3]{-2} 3^{2/3}\right ) x\right )}{11337408 \sqrt [3]{2} 3^{2/3} \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}+\frac {\left (18-2^{2/3} \sqrt [3]{3}\right ) x+6 \sqrt [3]{2} 3^{2/3}}{68024448 \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 1259712 \left (\frac {(-1)^{2/3} \left ((-1)^{2/3}-\sqrt [3]{2} 3^{2/3}\right ) \arctan \left (\frac {2 x+3 (-2)^{2/3} \sqrt [3]{3}}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{1259712 \sqrt [6]{2} 3^{5/6} \sqrt {4+3 \sqrt [3]{-2} 3^{2/3}}}-\frac {\left (2 (-3)^{2/3}-2^{2/3}\right ) \arctan \left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{-3}-\sqrt [3]{2} x\right )}{\sqrt {3 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{419904\ 6^{5/6} \left (1+\sqrt [3]{-1}\right )^2 \sqrt {4-3 (-3)^{2/3} \sqrt [3]{2}}}-\frac {\left (1-\sqrt [3]{2} 3^{2/3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (\sqrt [3]{2} x+3 \sqrt [3]{3}\right )}{\sqrt {3 \left (3 \sqrt [3]{2} 3^{2/3}-4\right )}}\right )}{1259712 \sqrt [6]{2} 3^{5/6} \sqrt {3 \sqrt [3]{2} 3^{2/3}-4}}+\frac {\left (36+2^{2/3} \sqrt [3]{3}+i 2^{2/3} 3^{5/6}\right ) \log \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}{272097792}+\frac {\left (18-(-2)^{2/3} \sqrt [3]{3}\right ) \log \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}{136048896}+\frac {\left (18-2^{2/3} \sqrt [3]{3}\right ) \log \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}{136048896}\right )\)

input
Int[x^5/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6),x]
 
output
1259712*(((-1)^(2/3)*((-1)^(2/3) - 2^(1/3)*3^(2/3))*ArcTan[(3*(-2)^(2/3)*3 
^(1/3) + 2*x)/Sqrt[6*(4 + 3*(-2)^(1/3)*3^(2/3))]])/(1259712*2^(1/6)*3^(5/6 
)*Sqrt[4 + 3*(-2)^(1/3)*3^(2/3)]) - ((2*(-3)^(2/3) - 2^(2/3))*ArcTan[(2^(1 
/6)*(3*(-3)^(1/3) - 2^(1/3)*x))/Sqrt[3*(4 - 3*(-3)^(2/3)*2^(1/3))]])/(4199 
04*6^(5/6)*(1 + (-1)^(1/3))^2*Sqrt[4 - 3*(-3)^(2/3)*2^(1/3)]) - ((1 - 2^(1 
/3)*3^(2/3))*ArcTanh[(2^(1/6)*(3*3^(1/3) + 2^(1/3)*x))/Sqrt[3*(-4 + 3*2^(1 
/3)*3^(2/3))]])/(1259712*2^(1/6)*3^(5/6)*Sqrt[-4 + 3*2^(1/3)*3^(2/3)]) + ( 
(36 + 2^(2/3)*3^(1/3) + I*2^(2/3)*3^(5/6))*Log[6 - 3*(-3)^(1/3)*2^(2/3)*x 
+ x^2])/272097792 + ((18 - (-2)^(2/3)*3^(1/3))*Log[6 + 3*(-2)^(2/3)*3^(1/3 
)*x + x^2])/136048896 + ((18 - 2^(2/3)*3^(1/3))*Log[6 + 3*2^(2/3)*3^(1/3)* 
x + x^2])/136048896)
 

3.2.43.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2466
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, 
 x, 2], c = Coeff[Q6, x, 3], d = Coeff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Sim 
p[1/(3^(3*p)*a^(2*p))   Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c, 3]* 
x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3* 
(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 
 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] && EqQ[Coef 
f[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
 
3.2.43.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.14

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\textit {\_R}^{5} \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(56\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\textit {\_R}^{5} \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(56\)

input
int(x^5/(x^6+18*x^4+324*x^3+108*x^2+216),x,method=_RETURNVERBOSE)
 
output
1/6*sum(_R^5/(_R^5+12*_R^3+162*_R^2+36*_R)*ln(x-_R),_R=RootOf(_Z^6+18*_Z^4 
+324*_Z^3+108*_Z^2+216))
 
3.2.43.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\text {Timed out} \]

input
integrate(x^5/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="fricas")
 
output
Timed out
 
3.2.43.6 Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.18 \[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\operatorname {RootSum} {\left (72662865048 t^{6} - 72662865048 t^{5} + 24163559388 t^{4} - 2646786132 t^{3} - 6626610 t^{2} - 4374 t - 1, \left ( t \mapsto t \log {\left (- \frac {89236417131047376 t^{5}}{833243797} + \frac {89301949532998128 t^{4}}{833243797} - \frac {29740560281805852 t^{3}}{833243797} + \frac {192466080408420 t^{2}}{49014341} + \frac {5867255361684 t}{833243797} + x + \frac {5365044886}{2499731391} \right )} \right )\right )} \]

input
integrate(x**5/(x**6+18*x**4+324*x**3+108*x**2+216),x)
 
output
RootSum(72662865048*_t**6 - 72662865048*_t**5 + 24163559388*_t**4 - 264678 
6132*_t**3 - 6626610*_t**2 - 4374*_t - 1, Lambda(_t, _t*log(-8923641713104 
7376*_t**5/833243797 + 89301949532998128*_t**4/833243797 - 297405602818058 
52*_t**3/833243797 + 192466080408420*_t**2/49014341 + 5867255361684*_t/833 
243797 + x + 5365044886/2499731391)))
 
3.2.43.7 Maxima [F]

\[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {x^{5}}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \]

input
integrate(x^5/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="maxima")
 
output
integrate(x^5/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 
3.2.43.8 Giac [F]

\[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {x^{5}}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \]

input
integrate(x^5/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="giac")
 
output
integrate(x^5/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 
3.2.43.9 Mupad [B] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 427, normalized size of antiderivative = 1.08 \[ \int \frac {x^5}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\sum _{k=1}^6\ln \left (\frac {362797056\,\left (19236852\,x\,\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )-19131876\,x-6482268\,x\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^2+742851\,x\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^3-4130\,x\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^4+x\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^5-154944576\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^2+17047422\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^3+27054\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^4+9\,{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^5+465542316\,\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )-465542316\right )}{{\mathrm {root}\left (z^6+4374\,z^5+6626610\,z^4+2646786132\,z^3-24163559388\,z^2+72662865048\,z-72662865048,z,k\right )}^5}\right )\,\mathrm {root}\left (z^6-z^5+\frac {421\,z^4}{1266}-\frac {100853\,z^3}{2768742}-\frac {505\,z^2}{5537484}-\frac {z}{16612452}-\frac {1}{72662865048},z,k\right ) \]

input
int(x^5/(108*x^2 + 324*x^3 + 18*x^4 + x^6 + 216),x)
 
output
symsum(log((362797056*(19236852*x*root(z^6 + 4374*z^5 + 6626610*z^4 + 2646 
786132*z^3 - 24163559388*z^2 + 72662865048*z - 72662865048, z, k) - 191318 
76*x - 6482268*x*root(z^6 + 4374*z^5 + 6626610*z^4 + 2646786132*z^3 - 2416 
3559388*z^2 + 72662865048*z - 72662865048, z, k)^2 + 742851*x*root(z^6 + 4 
374*z^5 + 6626610*z^4 + 2646786132*z^3 - 24163559388*z^2 + 72662865048*z - 
 72662865048, z, k)^3 - 4130*x*root(z^6 + 4374*z^5 + 6626610*z^4 + 2646786 
132*z^3 - 24163559388*z^2 + 72662865048*z - 72662865048, z, k)^4 + x*root( 
z^6 + 4374*z^5 + 6626610*z^4 + 2646786132*z^3 - 24163559388*z^2 + 72662865 
048*z - 72662865048, z, k)^5 - 154944576*root(z^6 + 4374*z^5 + 6626610*z^4 
 + 2646786132*z^3 - 24163559388*z^2 + 72662865048*z - 72662865048, z, k)^2 
 + 17047422*root(z^6 + 4374*z^5 + 6626610*z^4 + 2646786132*z^3 - 241635593 
88*z^2 + 72662865048*z - 72662865048, z, k)^3 + 27054*root(z^6 + 4374*z^5 
+ 6626610*z^4 + 2646786132*z^3 - 24163559388*z^2 + 72662865048*z - 7266286 
5048, z, k)^4 + 9*root(z^6 + 4374*z^5 + 6626610*z^4 + 2646786132*z^3 - 241 
63559388*z^2 + 72662865048*z - 72662865048, z, k)^5 + 465542316*root(z^6 + 
 4374*z^5 + 6626610*z^4 + 2646786132*z^3 - 24163559388*z^2 + 72662865048*z 
 - 72662865048, z, k) - 465542316))/root(z^6 + 4374*z^5 + 6626610*z^4 + 26 
46786132*z^3 - 24163559388*z^2 + 72662865048*z - 72662865048, z, k)^5)*roo 
t(z^6 - z^5 + (421*z^4)/1266 - (100853*z^3)/2768742 - (505*z^2)/5537484 - 
z/16612452 - 1/72662865048, z, k), k, 1, 6)