3.2.48 \(\int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx\) [148]

3.2.48.1 Optimal result
3.2.48.2 Mathematica [C] (verified)
3.2.48.3 Rubi [A] (verified)
3.2.48.4 Maple [C] (verified)
3.2.48.5 Fricas [F(-1)]
3.2.48.6 Sympy [A] (verification not implemented)
3.2.48.7 Maxima [F]
3.2.48.8 Giac [F]
3.2.48.9 Mupad [B] (verification not implemented)

3.2.48.1 Optimal result

Integrand size = 22, antiderivative size = 377 \[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\frac {(-1)^{2/3} \left (3 (-3)^{2/3}-2^{2/3}\right ) \arctan \left (\frac {3 \sqrt [3]{-3} 2^{2/3}-2 x}{\sqrt {6 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{324 \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^2 \sqrt {2 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}+\frac {\left (9-(-2)^{2/3} \sqrt [3]{3}\right ) \arctan \left (\frac {3 (-2)^{2/3} \sqrt [3]{3}+2 x}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{972 \sqrt {3 \left (8+9 i \sqrt [3]{2} \sqrt [6]{3}+3 \sqrt [3]{2} 3^{2/3}\right )}}-\frac {\left (9-2^{2/3} \sqrt [3]{3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{3}+\sqrt [3]{2} x\right )}{\sqrt {3 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )}}\right )}{972 \sqrt {6 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )}}-\frac {\log \left (6-3 \sqrt [3]{-3} 2^{2/3} x+x^2\right )}{216\ 2^{2/3} \sqrt [3]{3} \left (1+\sqrt [3]{-1}\right )^2}-\frac {\sqrt [3]{-\frac {1}{3}} \log \left (6+3 (-2)^{2/3} \sqrt [3]{3} x+x^2\right )}{648\ 2^{2/3}}+\frac {\log \left (6+3\ 2^{2/3} \sqrt [3]{3} x+x^2\right )}{648\ 2^{2/3} \sqrt [3]{3}} \]

output
-1/1296*ln(6-3*(-3)^(1/3)*2^(2/3)*x+x^2)*2^(1/3)*3^(2/3)/(1+(-1)^(1/3))^2- 
1/3888*(-1)^(1/3)*3^(2/3)*ln(6+3*(-2)^(2/3)*3^(1/3)*x+x^2)*2^(1/3)+1/3888* 
ln(6+3*2^(2/3)*3^(1/3)*x+x^2)*2^(1/3)*3^(2/3)+1/972*(-1)^(2/3)*(3*(-3)^(2/ 
3)-2^(2/3))*arctan((3*(-3)^(1/3)*2^(2/3)-2*x)/(24-18*(-3)^(2/3)*2^(1/3))^( 
1/2))*3^(5/6)/(1+(-1)^(1/3))^2/(8-6*(-3)^(2/3)*2^(1/3))^(1/2)-1/972*(9-2^( 
2/3)*3^(1/3))*arctanh(2^(1/6)*(3*3^(1/3)+2^(1/3)*x)/(-12+9*2^(1/3)*3^(2/3) 
)^(1/2))/(-24+18*2^(1/3)*3^(2/3))^(1/2)+1/972*(9-(-2)^(2/3)*3^(1/3))*arcta 
n((3*(-2)^(2/3)*3^(1/3)+2*x)/(24+18*(-2)^(1/3)*3^(2/3))^(1/2))/(24+27*I*2^ 
(1/3)*3^(1/6)+9*2^(1/3)*3^(2/3))^(1/2)
 
3.2.48.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.16 \[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\frac {1}{6} \text {RootSum}\left [216+108 \text {$\#$1}^2+324 \text {$\#$1}^3+18 \text {$\#$1}^4+\text {$\#$1}^6\&,\frac {\log (x-\text {$\#$1})}{36 \text {$\#$1}+162 \text {$\#$1}^2+12 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ] \]

input
Integrate[(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6)^(-1),x]
 
output
RootSum[216 + 108*#1^2 + 324*#1^3 + 18*#1^4 + #1^6 & , Log[x - #1]/(36*#1 
+ 162*#1^2 + 12*#1^3 + #1^5) & ]/6
 
3.2.48.3 Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 370, normalized size of antiderivative = 0.98, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {2466, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^6+18 x^4+324 x^3+108 x^2+216} \, dx\)

\(\Big \downarrow \) 2466

\(\displaystyle 1259712 \int \left (\frac {\left (-\frac {1}{3}\right )^{2/3} \left (\sqrt [3]{-6} x+2^{2/3} \left (1-3 (-3)^{2/3} \sqrt [3]{2}\right )\right )}{272097792 \left (1+\sqrt [3]{-1}\right )^2 \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}-\frac {\sqrt [3]{-6} x+2^{2/3} \left ((-1)^{2/3}-3 \sqrt [3]{2} 3^{2/3}\right )}{816293376\ 3^{2/3} \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}+\frac {\sqrt [3]{2} 3^{2/3} x-2^{2/3} \sqrt [3]{3}+18}{2448880128 \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 1259712 \left (\frac {\left (9-(-2)^{2/3} \sqrt [3]{3}\right ) \arctan \left (\frac {2 x+3 (-2)^{2/3} \sqrt [3]{3}}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{1224440064 \sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}+\frac {(-1)^{2/3} \left (3 (-3)^{2/3}-2^{2/3}\right ) \arctan \left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{-3}-\sqrt [3]{2} x\right )}{\sqrt {3 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{408146688 \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^2 \sqrt {2 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}-\frac {\left (9-2^{2/3} \sqrt [3]{3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (\sqrt [3]{2} x+3 \sqrt [3]{3}\right )}{\sqrt {3 \left (3 \sqrt [3]{2} 3^{2/3}-4\right )}}\right )}{1224440064 \sqrt {6 \left (3 \sqrt [3]{2} 3^{2/3}-4\right )}}-\frac {\log \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}{272097792\ 2^{2/3} \sqrt [3]{3} \left (1+\sqrt [3]{-1}\right )^2}-\frac {\sqrt [3]{-\frac {1}{3}} \log \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}{816293376\ 2^{2/3}}+\frac {\log \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}{816293376\ 2^{2/3} \sqrt [3]{3}}\right )\)

input
Int[(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6)^(-1),x]
 
output
1259712*(((9 - (-2)^(2/3)*3^(1/3))*ArcTan[(3*(-2)^(2/3)*3^(1/3) + 2*x)/Sqr 
t[6*(4 + 3*(-2)^(1/3)*3^(2/3))]])/(1224440064*Sqrt[6*(4 + 3*(-2)^(1/3)*3^( 
2/3))]) + ((-1)^(2/3)*(3*(-3)^(2/3) - 2^(2/3))*ArcTan[(2^(1/6)*(3*(-3)^(1/ 
3) - 2^(1/3)*x))/Sqrt[3*(4 - 3*(-3)^(2/3)*2^(1/3))]])/(408146688*3^(1/6)*( 
1 + (-1)^(1/3))^2*Sqrt[2*(4 - 3*(-3)^(2/3)*2^(1/3))]) - ((9 - 2^(2/3)*3^(1 
/3))*ArcTanh[(2^(1/6)*(3*3^(1/3) + 2^(1/3)*x))/Sqrt[3*(-4 + 3*2^(1/3)*3^(2 
/3))]])/(1224440064*Sqrt[6*(-4 + 3*2^(1/3)*3^(2/3))]) - Log[6 - 3*(-3)^(1/ 
3)*2^(2/3)*x + x^2]/(272097792*2^(2/3)*3^(1/3)*(1 + (-1)^(1/3))^2) - ((-1/ 
3)^(1/3)*Log[6 + 3*(-2)^(2/3)*3^(1/3)*x + x^2])/(816293376*2^(2/3)) + Log[ 
6 + 3*2^(2/3)*3^(1/3)*x + x^2]/(816293376*2^(2/3)*3^(1/3)))
 

3.2.48.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2466
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, 
 x, 2], c = Coeff[Q6, x, 3], d = Coeff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Sim 
p[1/(3^(3*p)*a^(2*p))   Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c, 3]* 
x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3* 
(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 
 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] && EqQ[Coef 
f[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
 
3.2.48.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.14

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(53\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{6}\) \(53\)

input
int(1/(x^6+18*x^4+324*x^3+108*x^2+216),x,method=_RETURNVERBOSE)
 
output
1/6*sum(1/(_R^5+12*_R^3+162*_R^2+36*_R)*ln(x-_R),_R=RootOf(_Z^6+18*_Z^4+32 
4*_Z^3+108*_Z^2+216))
 
3.2.48.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\text {Timed out} \]

input
integrate(1/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="fricas")
 
output
Timed out
 
3.2.48.6 Sympy [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.17 \[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\operatorname {RootSum} {\left (34164988081841849499648 t^{6} - 3470494144278528 t^{4} - 86087932019712 t^{3} - 1530550080 t^{2} + 69984 t - 1, \left ( t \mapsto t \log {\left (\frac {185904446699109611410573787136 t^{5}}{57121295165} + \frac {6377301253267917382766592 t^{4}}{57121295165} - \frac {18904636002388564311552 t^{3}}{57121295165} - \frac {469080552915181723968 t^{2}}{57121295165} - \frac {24358640509989936 t}{57121295165} + x + \frac {152427895956}{57121295165} \right )} \right )\right )} \]

input
integrate(1/(x**6+18*x**4+324*x**3+108*x**2+216),x)
 
output
RootSum(34164988081841849499648*_t**6 - 3470494144278528*_t**4 - 860879320 
19712*_t**3 - 1530550080*_t**2 + 69984*_t - 1, Lambda(_t, _t*log(185904446 
699109611410573787136*_t**5/57121295165 + 6377301253267917382766592*_t**4/ 
57121295165 - 18904636002388564311552*_t**3/57121295165 - 4690805529151817 
23968*_t**2/57121295165 - 24358640509989936*_t/57121295165 + x + 152427895 
956/57121295165)))
 
3.2.48.7 Maxima [F]

\[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {1}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \]

input
integrate(1/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="maxima")
 
output
integrate(1/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 
3.2.48.8 Giac [F]

\[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\int { \frac {1}{x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216} \,d x } \]

input
integrate(1/(x^6+18*x^4+324*x^3+108*x^2+216),x, algorithm="giac")
 
output
integrate(1/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 
3.2.48.9 Mupad [B] (verification not implemented)

Time = 9.36 (sec) , antiderivative size = 306, normalized size of antiderivative = 0.81 \[ \int \frac {1}{216+108 x^2+324 x^3+18 x^4+x^6} \, dx=\sum _{k=1}^6\ln \left (-\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )\,x\,6+{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^2\,x\,349920-{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^3\,x\,6122200320-{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^4\,x\,258263796059136-{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^5\,x\,6940988288557056+944784\,{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^2-16529940864\,{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^3-33192121254912\,{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^4-168897381688221696\,{\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right )}^5\right )\,\mathrm {root}\left (z^6-\frac {z^4}{9844416}-\frac {217\,z^3}{86118951168}-\frac {5\,z^2}{111610160713728}+\frac {z}{488182842961846272}-\frac {1}{34164988081841849499648},z,k\right ) \]

input
int(1/(108*x^2 + 324*x^3 + 18*x^4 + x^6 + 216),x)
 
output
symsum(log(349920*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2) 
/111610160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k) 
^2*x - 6*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/11161016 
0713728 + z/488182842961846272 - 1/34164988081841849499648, z, k)*x - 6122 
200320*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/1116101607 
13728 + z/488182842961846272 - 1/34164988081841849499648, z, k)^3*x - 2582 
63796059136*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/11161 
0160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k)^4*x - 
 6940988288557056*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2) 
/111610160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k) 
^5*x + 944784*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/111 
610160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k)^2 - 
 16529940864*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/1116 
10160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k)^3 - 
33192121254912*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/11 
1610160713728 + z/488182842961846272 - 1/34164988081841849499648, z, k)^4 
- 168897381688221696*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z 
^2)/111610160713728 + z/488182842961846272 - 1/34164988081841849499648, z, 
 k)^5)*root(z^6 - z^4/9844416 - (217*z^3)/86118951168 - (5*z^2)/1116101607 
13728 + z/488182842961846272 - 1/34164988081841849499648, z, k), k, 1, ...