3.2.53 \(\int \frac {x^6}{(216+108 x^2+324 x^3+18 x^4+x^6)^2} \, dx\) [153]

3.2.53.1 Optimal result
3.2.53.2 Mathematica [C] (verified)
3.2.53.3 Rubi [A] (verified)
3.2.53.4 Maple [C] (verified)
3.2.53.5 Fricas [F(-1)]
3.2.53.6 Sympy [A] (verification not implemented)
3.2.53.7 Maxima [F]
3.2.53.8 Giac [F]
3.2.53.9 Mupad [B] (verification not implemented)

3.2.53.1 Optimal result

Integrand size = 26, antiderivative size = 677 \[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\frac {9 (-2)^{2/3}+\sqrt [3]{6} \left (9+\sqrt [3]{-3} 2^{2/3}\right ) x}{2916\ 2^{2/3} \left (1+\sqrt [3]{-1}\right )^4 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right ) \left (6-3 \sqrt [3]{-3} 2^{2/3} x+x^2\right )}+\frac {9\ 2^{2/3}+\sqrt [3]{-1} 3^{2/3} \left (2+3 \sqrt [3]{-2} 3^{2/3}\right ) x}{13122\ 2^{2/3} \left (8+9 i \sqrt [3]{2} \sqrt [6]{3}+3 \sqrt [3]{2} 3^{2/3}\right ) \left (6+3 (-2)^{2/3} \sqrt [3]{3} x+x^2\right )}+\frac {3\ 2^{2/3} \sqrt [3]{3}-\left (2-3 \sqrt [3]{2} 3^{2/3}\right ) x}{8748\ 2^{2/3} \sqrt [3]{3} \left (4-3 \sqrt [3]{2} 3^{2/3}\right ) \left (6+3\ 2^{2/3} \sqrt [3]{3} x+x^2\right )}+\frac {\sqrt [3]{-1} \left (3 (-3)^{2/3}-2^{2/3}\right ) \arctan \left (\frac {3 \sqrt [3]{-3} 2^{2/3}-2 x}{\sqrt {6 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{486\ 6^{5/6} \left (1+\sqrt [3]{-1}\right )^4 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )^{3/2}}+\frac {\left (3 (-3)^{2/3}+\sqrt [3]{-1} 2^{2/3}\right ) \arctan \left (\frac {3 (-2)^{2/3} \sqrt [3]{3}+2 x}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{486\ 6^{5/6} \left (1-\sqrt [3]{-1}\right )^2 \left (1+\sqrt [3]{-1}\right )^4 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )^{3/2}}-\frac {\left (2^{2/3}-3\ 3^{2/3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{3}+\sqrt [3]{2} x\right )}{\sqrt {3 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )}}\right )}{486\ 6^{5/6} \left (1-\sqrt [3]{-1}\right )^2 \left (1+\sqrt [3]{-1}\right )^4 \left (-4+3 \sqrt [3]{2} 3^{2/3}\right )^{3/2}}+\frac {\sqrt [6]{-\frac {1}{3}} \log \left (6-3 \sqrt [3]{-3} 2^{2/3} x+x^2\right )}{5832 \sqrt [3]{2} \left (1+\sqrt [3]{-1}\right )^5}-\frac {i \log \left (6+3 (-2)^{2/3} \sqrt [3]{3} x+x^2\right )}{5832 \sqrt [3]{2} \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^5}+\frac {\log \left (6+3\ 2^{2/3} \sqrt [3]{3} x+x^2\right )}{52488 \sqrt [3]{2} 3^{2/3}} \]

output
1/5832*(9*(-2)^(2/3)+6^(1/3)*(9+(-3)^(1/3)*2^(2/3))*x)*2^(1/3)/(1+(-1)^(1/ 
3))^4/(4-3*(-3)^(2/3)*2^(1/3))/(6-3*(-3)^(1/3)*2^(2/3)*x+x^2)+1/26244*(9*2 
^(2/3)+(-1)^(1/3)*3^(2/3)*(2+3*(-2)^(1/3)*3^(2/3))*x)*2^(1/3)/(8+9*I*2^(1/ 
3)*3^(1/6)+3*2^(1/3)*3^(2/3))/(6+3*(-2)^(2/3)*3^(1/3)*x+x^2)+1/52488*(3*2^ 
(2/3)*3^(1/3)-(2-3*2^(1/3)*3^(2/3))*x)*2^(1/3)*3^(2/3)/(4-3*2^(1/3)*3^(2/3 
))/(6+3*2^(2/3)*3^(1/3)*x+x^2)+1/2916*(-1)^(1/3)*(3*(-3)^(2/3)-2^(2/3))*ar 
ctan((3*(-3)^(1/3)*2^(2/3)-2*x)/(24-18*(-3)^(2/3)*2^(1/3))^(1/2))*6^(1/6)/ 
(1+(-1)^(1/3))^4/(4-3*(-3)^(2/3)*2^(1/3))^(3/2)+1/2916*(3*(-3)^(2/3)+(-1)^ 
(1/3)*2^(2/3))*arctan((3*(-2)^(2/3)*3^(1/3)+2*x)/(24+18*(-2)^(1/3)*3^(2/3) 
)^(1/2))*6^(1/6)/(1-(-1)^(1/3))^2/(1+(-1)^(1/3))^4/(4+3*(-2)^(1/3)*3^(2/3) 
)^(3/2)-1/2916*(2^(2/3)-3*3^(2/3))*arctanh(2^(1/6)*(3*3^(1/3)+2^(1/3)*x)/( 
-12+9*2^(1/3)*3^(2/3))^(1/2))*6^(1/6)/(1-(-1)^(1/3))^2/(1+(-1)^(1/3))^4/(- 
4+3*2^(1/3)*3^(2/3))^(3/2)+1/34992*(-1)^(1/6)*3^(5/6)*ln(6-3*(-3)^(1/3)*2^ 
(2/3)*x+x^2)*2^(2/3)/(1+(-1)^(1/3))^5-1/34992*I*ln(6+3*(-2)^(2/3)*3^(1/3)* 
x+x^2)*2^(2/3)*3^(5/6)/(1+(-1)^(1/3))^5+1/314928*ln(6+3*2^(2/3)*3^(1/3)*x+ 
x^2)*2^(2/3)*3^(1/3)
 
3.2.53.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.25 \[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\frac {-96+108 x-64 x^2-72 x^3+73 x^4-3 x^5}{68364 \left (216+108 x^2+324 x^3+18 x^4+x^6\right )}-\frac {\text {RootSum}\left [216+108 \text {$\#$1}^2+324 \text {$\#$1}^3+18 \text {$\#$1}^4+\text {$\#$1}^6\&,\frac {108 \log (x-\text {$\#$1})-32 \log (x-\text {$\#$1}) \text {$\#$1}+108 \log (x-\text {$\#$1}) \text {$\#$1}^2-146 \log (x-\text {$\#$1}) \text {$\#$1}^3+3 \log (x-\text {$\#$1}) \text {$\#$1}^4}{36 \text {$\#$1}+162 \text {$\#$1}^2+12 \text {$\#$1}^3+\text {$\#$1}^5}\&\right ]}{410184} \]

input
Integrate[x^6/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6)^2,x]
 
output
(-96 + 108*x - 64*x^2 - 72*x^3 + 73*x^4 - 3*x^5)/(68364*(216 + 108*x^2 + 3 
24*x^3 + 18*x^4 + x^6)) - RootSum[216 + 108*#1^2 + 324*#1^3 + 18*#1^4 + #1 
^6 & , (108*Log[x - #1] - 32*Log[x - #1]*#1 + 108*Log[x - #1]*#1^2 - 146*L 
og[x - #1]*#1^3 + 3*Log[x - #1]*#1^4)/(36*#1 + 162*#1^2 + 12*#1^3 + #1^5) 
& ]/410184
 
3.2.53.3 Rubi [A] (verified)

Time = 1.97 (sec) , antiderivative size = 638, normalized size of antiderivative = 0.94, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {2466, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (x^6+18 x^4+324 x^3+108 x^2+216\right )^2} \, dx\)

\(\Big \downarrow \) 2466

\(\displaystyle 1586874322944 \int \left (\frac {3^{5/6} \left (1+\sqrt [3]{-1}\right )-i \sqrt [3]{2} x}{4627325525704704\ 2^{2/3} \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^5 \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}-\frac {3 i 3^{5/6}-\left (\sqrt [3]{-2}+\sqrt [3]{2}\right ) x}{4627325525704704\ 6^{2/3} \left (1+\sqrt [3]{-1}\right )^5 \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}+\frac {\sqrt [3]{2} x+3 \sqrt [3]{3}}{41645929731342336\ 6^{2/3} \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}-\frac {(-1)^{2/3} \left (\sqrt [3]{3} x+\sqrt [3]{-2} \sqrt [3]{-1}\right )}{514147280633856 \sqrt [3]{3} \left (1+\sqrt [3]{-1}\right )^4 \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )^2}+\frac {2 \sqrt [3]{-1}-2^{2/3} \sqrt [3]{3} x}{4627325525704704\ 2^{2/3} \sqrt [3]{3} \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )^2}-\frac {\sqrt [3]{3} x+\sqrt [3]{2}}{4627325525704704 \sqrt [3]{3} \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle 1586874322944 \left (\frac {\left (3 (-3)^{2/3}+\sqrt [3]{-1} 2^{2/3}\right ) \arctan \left (\frac {2 x+3 (-2)^{2/3} \sqrt [3]{3}}{\sqrt {6 \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )}}\right )}{6940988288557056\ 6^{5/6} \left (4+3 \sqrt [3]{-2} 3^{2/3}\right )^{3/2}}-\frac {\left (\sqrt [3]{-1} 2^{2/3}+3\ 3^{2/3}\right ) \arctan \left (\frac {\sqrt [6]{2} \left (3 \sqrt [3]{-3}-\sqrt [3]{2} x\right )}{\sqrt {3 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )}}\right )}{771220920950784\ 6^{5/6} \left (1+\sqrt [3]{-1}\right )^4 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right )^{3/2}}-\frac {\left (2^{2/3}-3\ 3^{2/3}\right ) \text {arctanh}\left (\frac {\sqrt [6]{2} \left (\sqrt [3]{2} x+3 \sqrt [3]{3}\right )}{\sqrt {3 \left (3 \sqrt [3]{2} 3^{2/3}-4\right )}}\right )}{6940988288557056\ 6^{5/6} \left (3 \sqrt [3]{2} 3^{2/3}-4\right )^{3/2}}+\frac {\sqrt [3]{-1} \left (2+3 \sqrt [3]{-2} 3^{2/3}\right ) x+3\ 2^{2/3} \sqrt [3]{3}}{13881976577114112\ 2^{2/3} \sqrt [3]{3} \left (4+3 \sqrt [3]{-2} 3^{2/3}\right ) \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}+\frac {(-1)^{2/3} \left (6 \sqrt [3]{3}-\sqrt [3]{-2} \left (2 \sqrt [3]{-1}+3 \sqrt [3]{2} 3^{2/3}\right ) x\right )}{3084883683803136 \sqrt [3]{3} \left (1+\sqrt [3]{-1}\right )^4 \left (4-3 (-3)^{2/3} \sqrt [3]{2}\right ) \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}+\frac {6 \sqrt [3]{3}-\left (2 \sqrt [3]{2}-3\ 6^{2/3}\right ) x}{27763953154228224 \sqrt [3]{3} \left (4-3 \sqrt [3]{2} 3^{2/3}\right ) \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}+\frac {\sqrt [6]{-\frac {1}{3}} \log \left (x^2-3 \sqrt [3]{-3} 2^{2/3} x+6\right )}{9254651051409408 \sqrt [3]{2} \left (1+\sqrt [3]{-1}\right )^5}-\frac {i \log \left (x^2+3 (-2)^{2/3} \sqrt [3]{3} x+6\right )}{9254651051409408 \sqrt [3]{2} \sqrt [6]{3} \left (1+\sqrt [3]{-1}\right )^5}+\frac {\log \left (x^2+3\ 2^{2/3} \sqrt [3]{3} x+6\right )}{83291859462684672 \sqrt [3]{2} 3^{2/3}}\right )\)

input
Int[x^6/(216 + 108*x^2 + 324*x^3 + 18*x^4 + x^6)^2,x]
 
output
1586874322944*(((-1)^(2/3)*(6*3^(1/3) - (-2)^(1/3)*(2*(-1)^(1/3) + 3*2^(1/ 
3)*3^(2/3))*x))/(3084883683803136*3^(1/3)*(1 + (-1)^(1/3))^4*(4 - 3*(-3)^( 
2/3)*2^(1/3))*(6 - 3*(-3)^(1/3)*2^(2/3)*x + x^2)) + (3*2^(2/3)*3^(1/3) + ( 
-1)^(1/3)*(2 + 3*(-2)^(1/3)*3^(2/3))*x)/(13881976577114112*2^(2/3)*3^(1/3) 
*(4 + 3*(-2)^(1/3)*3^(2/3))*(6 + 3*(-2)^(2/3)*3^(1/3)*x + x^2)) + (6*3^(1/ 
3) - (2*2^(1/3) - 3*6^(2/3))*x)/(27763953154228224*3^(1/3)*(4 - 3*2^(1/3)* 
3^(2/3))*(6 + 3*2^(2/3)*3^(1/3)*x + x^2)) + ((3*(-3)^(2/3) + (-1)^(1/3)*2^ 
(2/3))*ArcTan[(3*(-2)^(2/3)*3^(1/3) + 2*x)/Sqrt[6*(4 + 3*(-2)^(1/3)*3^(2/3 
))]])/(6940988288557056*6^(5/6)*(4 + 3*(-2)^(1/3)*3^(2/3))^(3/2)) - (((-1) 
^(1/3)*2^(2/3) + 3*3^(2/3))*ArcTan[(2^(1/6)*(3*(-3)^(1/3) - 2^(1/3)*x))/Sq 
rt[3*(4 - 3*(-3)^(2/3)*2^(1/3))]])/(771220920950784*6^(5/6)*(1 + (-1)^(1/3 
))^4*(4 - 3*(-3)^(2/3)*2^(1/3))^(3/2)) - ((2^(2/3) - 3*3^(2/3))*ArcTanh[(2 
^(1/6)*(3*3^(1/3) + 2^(1/3)*x))/Sqrt[3*(-4 + 3*2^(1/3)*3^(2/3))]])/(694098 
8288557056*6^(5/6)*(-4 + 3*2^(1/3)*3^(2/3))^(3/2)) + ((-1/3)^(1/6)*Log[6 - 
 3*(-3)^(1/3)*2^(2/3)*x + x^2])/(9254651051409408*2^(1/3)*(1 + (-1)^(1/3)) 
^5) - ((I/9254651051409408)*Log[6 + 3*(-2)^(2/3)*3^(1/3)*x + x^2])/(2^(1/3 
)*3^(1/6)*(1 + (-1)^(1/3))^5) + Log[6 + 3*2^(2/3)*3^(1/3)*x + x^2]/(832918 
59462684672*2^(1/3)*3^(2/3)))
 

3.2.53.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2466
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, 
 x, 2], c = Coeff[Q6, x, 3], d = Coeff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Sim 
p[1/(3^(3*p)*a^(2*p))   Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c, 3]* 
x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3* 
(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 
 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] && EqQ[Coef 
f[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
 
3.2.53.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.06 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.18

method result size
default \(\frac {-\frac {1}{22788} x^{5}+\frac {73}{68364} x^{4}-\frac {2}{1899} x^{3}-\frac {16}{17091} x^{2}+\frac {1}{633} x -\frac {8}{5697}}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\left (-3 \textit {\_R}^{4}+146 \textit {\_R}^{3}-108 \textit {\_R}^{2}+32 \textit {\_R} -108\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{410184}\) \(122\)
risch \(\frac {-\frac {1}{22788} x^{5}+\frac {73}{68364} x^{4}-\frac {2}{1899} x^{3}-\frac {16}{17091} x^{2}+\frac {1}{633} x -\frac {8}{5697}}{x^{6}+18 x^{4}+324 x^{3}+108 x^{2}+216}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{6}+18 \textit {\_Z}^{4}+324 \textit {\_Z}^{3}+108 \textit {\_Z}^{2}+216\right )}{\sum }\frac {\left (-3 \textit {\_R}^{4}+146 \textit {\_R}^{3}-108 \textit {\_R}^{2}+32 \textit {\_R} -108\right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{5}+12 \textit {\_R}^{3}+162 \textit {\_R}^{2}+36 \textit {\_R}}\right )}{410184}\) \(122\)

input
int(x^6/(x^6+18*x^4+324*x^3+108*x^2+216)^2,x,method=_RETURNVERBOSE)
 
output
(-1/22788*x^5+73/68364*x^4-2/1899*x^3-16/17091*x^2+1/633*x-8/5697)/(x^6+18 
*x^4+324*x^3+108*x^2+216)+1/410184*sum((-3*_R^4+146*_R^3-108*_R^2+32*_R-10 
8)/(_R^5+12*_R^3+162*_R^2+36*_R)*ln(x-_R),_R=RootOf(_Z^6+18*_Z^4+324*_Z^3+ 
108*_Z^2+216))
 
3.2.53.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\text {Timed out} \]

input
integrate(x^6/(x^6+18*x^4+324*x^3+108*x^2+216)^2,x, algorithm="fricas")
 
output
Timed out
 
3.2.53.6 Sympy [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.17 \[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\operatorname {RootSum} {\left (3977704731623097128039995515166457856 t^{6} - 1010314319415295961050951680 t^{4} - 20168224477093957151232 t^{3} - 112582856818899648 t^{2} - 50648453064 t - 880007, \left ( t \mapsto t \log {\left (- \frac {273655567090018991570649941414395560986199688040644608 t^{5}}{49797855396139900267573395695} + \frac {11837008470196046085308646230764354292805044570112 t^{4}}{49797855396139900267573395695} - \frac {10570581900446717266374077482873315047787008 t^{3}}{49797855396139900267573395695} - \frac {1552547411569469872387563218792789323392 t^{2}}{49797855396139900267573395695} - \frac {12542923791159140826909003250295928 t}{49797855396139900267573395695} + x - \frac {23066533870320322410834348296}{49797855396139900267573395695} \right )} \right )\right )} + \frac {- 3 x^{5} + 73 x^{4} - 72 x^{3} - 64 x^{2} + 108 x - 96}{68364 x^{6} + 1230552 x^{4} + 22149936 x^{3} + 7383312 x^{2} + 14766624} \]

input
integrate(x**6/(x**6+18*x**4+324*x**3+108*x**2+216)**2,x)
 
output
RootSum(3977704731623097128039995515166457856*_t**6 - 10103143194152959610 
50951680*_t**4 - 20168224477093957151232*_t**3 - 112582856818899648*_t**2 
- 50648453064*_t - 880007, Lambda(_t, _t*log(-2736555670900189915706499414 
14395560986199688040644608*_t**5/49797855396139900267573395695 + 118370084 
70196046085308646230764354292805044570112*_t**4/49797855396139900267573395 
695 - 10570581900446717266374077482873315047787008*_t**3/49797855396139900 
267573395695 - 1552547411569469872387563218792789323392*_t**2/497978553961 
39900267573395695 - 12542923791159140826909003250295928*_t/497978553961399 
00267573395695 + x - 23066533870320322410834348296/49797855396139900267573 
395695))) + (-3*x**5 + 73*x**4 - 72*x**3 - 64*x**2 + 108*x - 96)/(68364*x* 
*6 + 1230552*x**4 + 22149936*x**3 + 7383312*x**2 + 14766624)
 
3.2.53.7 Maxima [F]

\[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\int { \frac {x^{6}}{{\left (x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216\right )}^{2}} \,d x } \]

input
integrate(x^6/(x^6+18*x^4+324*x^3+108*x^2+216)^2,x, algorithm="maxima")
 
output
-1/68364*(3*x^5 - 73*x^4 + 72*x^3 + 64*x^2 - 108*x + 96)/(x^6 + 18*x^4 + 3 
24*x^3 + 108*x^2 + 216) - 1/68364*integrate((3*x^4 - 146*x^3 + 108*x^2 - 3 
2*x + 108)/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216), x)
 
3.2.53.8 Giac [F]

\[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\int { \frac {x^{6}}{{\left (x^{6} + 18 \, x^{4} + 324 \, x^{3} + 108 \, x^{2} + 216\right )}^{2}} \,d x } \]

input
integrate(x^6/(x^6+18*x^4+324*x^3+108*x^2+216)^2,x, algorithm="giac")
 
output
integrate(x^6/(x^6 + 18*x^4 + 324*x^3 + 108*x^2 + 216)^2, x)
 
3.2.53.9 Mupad [B] (verification not implemented)

Time = 9.05 (sec) , antiderivative size = 388, normalized size of antiderivative = 0.57 \[ \int \frac {x^6}{\left (216+108 x^2+324 x^3+18 x^4+x^6\right )^2} \, dx=\text {Too large to display} \]

input
int(x^6/(108*x^2 + 324*x^3 + 18*x^4 + x^6 + 216)^2,x)
 
output
symsum(log((7028852*root(z^6 - (60865*z^4)/239631364059408 - (15496909*z^3 
)/3056398361930300326272 - (168169*z^2)/5941638415592503834272768 - (3971* 
z)/311864717157619341253309046784 - 880007/3977704731623097128039995515166 
457856, z, k))/2628920529 - (1980083*x)/310470256633842 - (235710556*root( 
z^6 - (60865*z^4)/239631364059408 - (15496909*z^3)/3056398361930300326272 
- (168169*z^2)/5941638415592503834272768 - (3971*z)/3118647171576193412533 
09046784 - 880007/3977704731623097128039995515166457856, z, k)*x)/70980854 
283 - (6628544*root(z^6 - (60865*z^4)/239631364059408 - (15496909*z^3)/305 
6398361930300326272 - (168169*z^2)/5941638415592503834272768 - (3971*z)/31 
1864717157619341253309046784 - 880007/397770473162309712803999551516645785 
6, z, k)^2*x)/44521 - (141776759808*root(z^6 - (60865*z^4)/239631364059408 
 - (15496909*z^3)/3056398361930300326272 - (168169*z^2)/594163841559250383 
4272768 - (3971*z)/311864717157619341253309046784 - 880007/397770473162309 
7128039995515166457856, z, k)^3*x)/44521 + (183701926508544*root(z^6 - (60 
865*z^4)/239631364059408 - (15496909*z^3)/3056398361930300326272 - (168169 
*z^2)/5941638415592503834272768 - (3971*z)/311864717157619341253309046784 
- 880007/3977704731623097128039995515166457856, z, k)^4*x)/211 - 694098828 
8557056*root(z^6 - (60865*z^4)/239631364059408 - (15496909*z^3)/3056398361 
930300326272 - (168169*z^2)/5941638415592503834272768 - (3971*z)/311864717 
157619341253309046784 - 880007/3977704731623097128039995515166457856, z...